Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an, 710054, China.
Hitachi Building Technology (Guangzhou) Co., Ltd, Guangzhou, 510700, China.
Sci Rep. 2022 Mar 23;12(1):5000. doi: 10.1038/s41598-022-08637-8.
In recent years, the XACML (eXtensible Access Control Markup Language) is widely used in a variety of research fields, especially in access control. However, when policy sets defined by the XACML become large and complex, the policy evaluation time increases significantly. In order to improve policy evaluation performance, we propose an optimization algorithm based on the DPCA (Density Peak Cluster Algorithm) to improve the clustering effect on large-scale complex policy sets. Combined with this algorithm, an efficient policy evaluation engine, named DPEngine, is proposed to speed up policy matching and reduce the policy evaluation time. We compare the policy evaluation time of DPEngine with the Sun PDP, HPEngine, XEngine and SBA-XACML. The experiment results show that (1) when the number of requests reaches 10,000, the DPEngine evaluation time on a large-scale policy set with 100,000 rules is approximately 2.23%, 3.47%, 3.67% and 4.06% of that of the Sun PDP, HPEngine, XEngine and SBA-XACML, respectively and (2) as the number of requests increases, the DPEngine evaluation time grows linearly. Compared with other policy evaluation engines, the DPEngine has the advantages of efficiency and stability.
近年来,XACML(可扩展访问控制标记语言)在各种研究领域得到了广泛应用,特别是在访问控制方面。然而,当 XACML 定义的策略集变得庞大和复杂时,策略评估时间会显著增加。为了提高策略评估性能,我们提出了一种基于 DPCA(密度峰值聚类算法)的优化算法,以提高对大规模复杂策略集的聚类效果。结合该算法,提出了一种高效的策略评估引擎,名为 DPEngine,用于加速策略匹配并减少策略评估时间。我们将 DPEngine 的策略评估时间与 Sun PDP、HPEngine、XEngine 和 SBA-XACML 进行了比较。实验结果表明:(1)当请求数量达到 10000 时,DPEngine 在具有 100000 条规则的大规模策略集上的评估时间分别约为 Sun PDP、HPEngine、XEngine 和 SBA-XACML 的 2.23%、3.47%、3.67%和 4.06%;(2)随着请求数量的增加,DPEngine 的评估时间呈线性增长。与其他策略评估引擎相比,DPEngine 具有高效和稳定的优点。