Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi di Bari Aldo Moro, 70124, Bari, Italy.
Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125, Bari, Italy.
Sci Rep. 2022 Mar 23;12(1):4995. doi: 10.1038/s41598-022-08859-w.
University rankings are increasingly adopted for academic comparison and success quantification, even to establish performance-based criteria for funding assignment. However, rankings are not neutral tools, and their use frequently overlooks disparities in the starting conditions of institutions. In this research, we detect and measure structural biases that affect in inhomogeneous ways the ranking outcomes of universities from diversified territorial and educational contexts. Moreover, we develop a fairer rating system based on a fully data-driven debiasing strategy that returns an equity-oriented redefinition of the achieved scores. The key idea consists in partitioning universities in similarity groups, determined from multifaceted data using complex network analysis, and referring the performance of each institution to an expectation based on its peers. Significant evidence of territorial biases emerges for official rankings concerning both the OECD and Italian university systems, hence debiasing provides relevant insights suggesting the design of fairer strategies for performance-based funding allocations.
大学排名越来越多地被用于学术比较和成功量化,甚至用于为拨款分配建立基于绩效的标准。然而,排名并不是中立的工具,它们的使用经常忽略了机构起点条件的差异。在这项研究中,我们发现并衡量了结构性偏见,这些偏见以不均匀的方式影响来自不同地域和教育背景的大学的排名结果。此外,我们开发了一个更公平的评级系统,该系统基于完全数据驱动的去偏策略,该策略返回了一个基于公平导向的对已实现分数的重新定义。关键思想是将大学划分为相似组,这些组是使用复杂网络分析从多方面数据中确定的,并根据其同行的期望来参考每个机构的绩效。官方排名在经合组织和意大利大学系统中都出现了明显的地域偏见,因此去偏提供了重要的见解,建议为基于绩效的拨款分配设计更公平的策略。