Suppr超能文献

用复杂网络预测脑龄:从青春期到成年期。

Predicting brain age with complex networks: From adolescence to adulthood.

机构信息

Dipartimento Interateneo di Fisica, Universitá degli Studi di Bari Aldo Moro, Bari, Italy.

University of Southern California, Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, United States.

出版信息

Neuroimage. 2021 Jan 15;225:117458. doi: 10.1016/j.neuroimage.2020.117458. Epub 2020 Oct 21.

Abstract

In recent years, several studies have demonstrated that machine learning and deep learning systems can be very useful to accurately predict brain age. In this work, we propose a novel approach based on complex networks using 1016 T1-weighted MRI brain scans (in the age range 7-64years). We introduce a structural connectivity model of the human brain: MRI scans are divided in rectangular boxes and Pearson's correlation is measured among them in order to obtain a complex network model. Brain connectivity is then characterized through few and easy-to-interpret centrality measures; finally, brain age is predicted by feeding a compact deep neural network. The proposed approach is accurate, robust and computationally efficient, despite the large and heterogeneous dataset used. Age prediction accuracy, in terms of correlation between predicted and actual age r=0.89and Mean Absolute Error MAE =2.19years, compares favorably with results from state-of-the-art approaches. On an independent test set including 262 subjects, whose scans were acquired with different scanners and protocols we found MAE =2.52. The only imaging analysis steps required in the proposed framework are brain extraction and linear registration, hence robust results are obtained with a low computational cost. In addition, the network model provides a novel insight on aging patterns within the brain and specific information about anatomical districts displaying relevant changes with aging.

摘要

近年来,多项研究表明,机器学习和深度学习系统在准确预测大脑年龄方面非常有用。在这项工作中,我们提出了一种新的基于复杂网络的方法,使用了 1016 个 T1 加权 MRI 脑扫描(年龄范围为 7-64 岁)。我们引入了一种人类大脑结构连接模型:将 MRI 扫描分为矩形框,并测量它们之间的皮尔逊相关性,以获得复杂网络模型。然后通过几个简单易解释的中心性度量来描述大脑连接;最后,通过馈送紧凑的深度神经网络来预测大脑年龄。该方法尽管使用了大型且异构的数据集,但具有准确性高、鲁棒性强和计算效率高的特点。在预测年龄方面,预测年龄与实际年龄之间的相关性 r=0.89,平均绝对误差 MAE=2.19 岁,与最先进方法的结果相当。在包括 262 名受试者的独立测试集中,其扫描是使用不同的扫描仪和协议采集的,我们发现 MAE=2.52。在所提出的框架中,仅需要进行脑提取和线性配准这两个影像分析步骤,因此可以以较低的计算成本获得稳健的结果。此外,网络模型为大脑老化模式提供了新的见解,并提供了有关与老化相关的特定解剖区域的信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验