Suppr超能文献

优化退伍军人事务患者的种族和民族数据。

Optimizing Data on Race and Ethnicity for Veterans Affairs Patients.

机构信息

White River Junction VA Medical Center, White River Junction, VT 05009, USA.

VHA Office of Health Equity, Washington, DC 20420, USA.

出版信息

Mil Med. 2022 Jul 1;187(7-8):e955-e962. doi: 10.1093/milmed/usac066.

Abstract

INTRODUCTION

Maintaining accurate race and ethnicity data among patients of the Veterans Affairs (VA) healthcare system has historically been a challenge. This work expands on previous efforts to optimize race and ethnicity values by combining multiple VA data sources and exploring race- and ethnicity-specific collation algorithms.

MATERIALS AND METHODS

We linked VA patient data from 2000 to 2018 with race and ethnicity data from four administrative and electronic health record sources: VA Medical SAS files (MedSAS), Corporate Data Warehouse (CDW), VA Centers for Medicare extracts (CMS), and VA Defense Identity Repository Data (VADIR). To assess the accuracy of each data source, we compared race and ethnicity values to self-reported data from the Survey of Health Experiences of Patients (SHEP). We used Cohen's Kappa to assess overall (holistic) source agreement and positive predictive values (PPV) to determine the accuracy of sources for each race and ethnicity separately.

RESULTS

Holistic agreement with SHEP data was excellent (K > 0.80 for all sources), while race- and ethnicity-specific agreement varied. All sources were best at identifying White and Black users (average PPV = 0.94, 0.93, respectively). When applied to the full VA user population, both holistic and race-specific algorithms substantially reduced unknown values, as compared to single-source methods.

CONCLUSIONS

Combining multiple sources to generate race and ethnicity values improves data accuracy among VA patients. Based on the overall agreement with self-reported data, we recommend using non-missing values from sources in the following order to fill in race values-SHEP, CMS, CDW, MedSAS, and VADIR-and in the following order to fill in ethnicity values-SHEP, CDW, MedSAS, VADIR, and CMS.

摘要

简介

在 Veterans Affairs(VA)医疗保健系统中,维护患者准确的种族和族裔数据一直是一个挑战。这项工作扩展了以前通过结合多个 VA 数据源并探索特定于种族和族裔的分类算法来优化种族和族裔值的努力。

材料和方法

我们将 2000 年至 2018 年期间的 VA 患者数据与来自四个行政和电子健康记录来源的种族和族裔数据相链接:VA 医疗 SAS 文件(MedSAS)、企业数据仓库(CDW)、VA 医疗保险提取中心(CMS)和 VA 国防身份库数据(VADIR)。为了评估每个数据源的准确性,我们将种族和族裔值与来自患者健康体验调查(SHEP)的自我报告数据进行了比较。我们使用 Cohen 的 Kappa 评估整体(整体)源一致性,并用阳性预测值(PPV)来确定每个种族和族裔的源的准确性。

结果

与 SHEP 数据的整体一致性非常好(所有来源的 K 值均>0.80),而种族和族裔特异性的一致性则有所不同。所有来源都非常擅长识别白人(平均 PPV=0.94)和黑人(平均 PPV=0.93)用户。当应用于整个 VA 用户群体时,与单一来源方法相比,整体和种族特异性算法都大大减少了未知值。

结论

通过结合多个来源生成种族和族裔值,可以提高 VA 患者的数据准确性。根据与自我报告数据的整体一致性,我们建议按照以下顺序使用来源中非缺失值来填充种族值-SHEP、CMS、CDW、MedSAS 和 VADIR-并按照以下顺序使用来源中非缺失值来填充族裔值-SHEP、CDW、MedSAS、VADIR 和 CMS。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验