Suppr超能文献

增强氧配位CoNC催化剂上的氧还原以实现高效H₂O电合成

Boosting Oxygen Reduction for High-Efficiency H O Electrosynthesis on Oxygen-Coordinated CoNC Catalysts.

作者信息

Shen Hangjia, Qiu Nianxiang, Yang Liu, Guo Xuyun, Zhang Kun, Thomas Tiju, Du Shiyu, Zheng Qifu, Attfield J Paul, Zhu Ye, Yang Minghui

机构信息

College of Chemical and Material Engineering, Quzhou University, Quzhou, 324000, China.

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.

出版信息

Small. 2022 Apr;18(17):e2200730. doi: 10.1002/smll.202200730. Epub 2022 Mar 24.

Abstract

Atomically dispersed CoNC is a promising material for H O selective electrosynthesis via a two-electron oxygen reduction reaction. However, the performance of typical CoNC materials with routine CoN active center is insufficient and needs to be improved further. This can be done by fine-tuning its atomic coordination configuration. Here, a single-atom electrocatalyst (Co/NC) is reported that comprises a specifically penta-coordinated CoNC configuration (OCoN C ) with Co center coordinated by two nitrogen atoms, two carbon atoms, and one oxygen atom. Using a combination of theoretical predictions and experiments, it is confirmed that the unique atomic structure slightly increases the charge state of the cobalt center. This optimizes the adsorption energy towards *OOH intermediate, and therefore favors the two-electron ORR relevant for H O electrosynthesis. In neutral solution, the as-synthesized Co/NC exhibits a selectivity of over 90% over a potential ranging from 0.36 to 0.8 V, with a turnover frequency value of 11.48 s ; thus outperforming the state-of-the-art carbon-based catalysts.

摘要

原子分散的CoNC是一种通过双电子氧还原反应进行H₂O选择性电合成的有前景的材料。然而,具有常规CoN活性中心的典型CoNC材料的性能不足,需要进一步改进。这可以通过微调其原子配位构型来实现。在此,报道了一种单原子电催化剂(Co/NC),其具有特殊的五配位CoNC构型(OCoN₄C),其中Co中心由两个氮原子、两个碳原子和一个氧原子配位。通过理论预测和实验相结合,证实了独特的原子结构略微增加了钴中心的电荷状态。这优化了对*OOH中间体的吸附能,因此有利于与H₂O电合成相关的双电子ORR。在中性溶液中,合成的Co/NC在0.36至0.8 V的电位范围内表现出超过90%的选择性,周转频率值为11.48 s⁻¹;因此优于目前最先进的碳基催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验