State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Centre of the Ministry of Education and College of Chemistry, and Chemical Engineering, Hunan University, Changsha, 410082, China.
Small. 2022 Jan;18(3):e2103824. doi: 10.1002/smll.202103824. Epub 2021 Nov 2.
Electrochemical synthesis of hydrogen peroxide (H O ) via the 2-electron oxygen reduction reaction (ORR) has emerged as a promising alternative to the energy-intensive anthraquinone process and catalysts combining high selectivity with superior activity are crucial for enhancing the efficiency of H O electrosynthesis. In recent years, single-atom catalysts (SACs) with the merits of maximum atom utilization efficiency, tunable electronic structure, and high mass activity have attracted extensive attention for the selective reduction of O to H O . Although considerable improvements are made in the performance of SACs toward the 2-electron ORR process, the principles for modulating the catalytic properties of SACs by adjusting the electronic structure remain elusive. In this review, the regulation strategies for optimizing the 2-electron ORR activity and selectivity of SACs by different methods of electronic structure tuning, including the altering of the central metal atoms, the modulation of the coordinated atoms, the substrate effect, and alloy engineering are summarized. Finally, the challenges and future prospects of advanced SACs for H O electrosynthesis via the 2-electron ORR process are proposed.
通过两电子氧还原反应(ORR)电化学合成过氧化氢(H2O2),作为一种有前途的替代能源密集型蒽醌工艺,具有高选择性和优异活性的催化剂对于提高 H2O2 电合成效率至关重要。近年来,具有最高原子利用率、可调电子结构和高质量活性的单原子催化剂(SACs),因其对 O2 的选择性还原到 H2O2 而受到广泛关注。尽管 SACs 在 2 电子 ORR 过程中的性能得到了相当大的提高,但通过调整电子结构来调节 SACs 催化性能的原理仍然难以捉摸。在这篇综述中,总结了通过改变中心金属原子、调节配位原子、基底效应和合金工程等不同的电子结构调谐方法来优化 SACs 对 2 电子 ORR 活性和选择性的调控策略。最后,提出了通过 2 电子 ORR 过程电化学合成 H2O2 的先进 SACs 所面临的挑战和未来展望。