Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
Carl-Ludwig-Institute of Physiology, Faculty of Medicine, Leipzig University, Leipzig, Germany.
Science. 2022 Mar 25;375(6587):1378-1385. doi: 10.1126/science.abn0532. Epub 2022 Mar 24.
Information flow in neurons proceeds by integrating inputs in dendrites, generating action potentials near the soma, and releasing neurotransmitters from nerve terminals in the axon. We found that in the striatum, acetylcholine-releasing neurons induce action potential firing in distal dopamine axons. Spontaneous activity of cholinergic neurons produced dopamine release that extended beyond acetylcholine-signaling domains, and traveling action potentials were readily recorded from dopamine axons in response to cholinergic activation. In freely moving mice, dopamine and acetylcholine covaried with movement direction. Local inhibition of nicotinic acetylcholine receptors impaired dopamine dynamics and affected movement. Our findings uncover an endogenous mechanism for action potential initiation independent of somatodendritic integration and establish that this mechanism segregates the control of dopamine signaling between axons and somata.
神经元中的信息传递是通过整合树突中的输入信息、在胞体附近产生动作电位、以及从轴突中的神经末梢释放神经递质来实现的。我们发现,在纹状体中,乙酰胆碱释放神经元会诱导远端多巴胺轴突中的动作电位发放。胆碱能神经元的自发性活动会引发多巴胺释放,这种释放会超出乙酰胆碱信号的范围,并且当胆碱能神经元被激活时,很容易从多巴胺轴突中记录到传导的动作电位。在自由活动的小鼠中,多巴胺和乙酰胆碱与运动方向共变。局部抑制烟碱型乙酰胆碱受体会损害多巴胺动力学并影响运动。我们的发现揭示了一种独立于胞体树突整合的动作电位起始的内源性机制,并证实了这种机制将多巴胺信号的控制在轴突和胞体之间进行了分隔。