Suppr超能文献

基于样本熵的多频段频谱感知

Multiband Spectrum Sensing Based on the Sample Entropy.

作者信息

Molina-Tenorio Yanqueleth, Prieto-Guerrero Alfonso, Aguilar-Gonzalez Rafael

机构信息

Information Science and Technology, Metropolitan Autonomous University Iztapalapa, Mexico City 09360, Mexico.

Electrical Engineering Department, Metropolitan Autonomous University Iztapalapa, Mexico City 09360, Mexico.

出版信息

Entropy (Basel). 2022 Mar 15;24(3):411. doi: 10.3390/e24030411.

Abstract

Cognitive radios represent a real alternative to the scarcity of the radio spectrum. One of the primary tasks of these radios is the detection of possible gaps in a given bandwidth used by licensed users (called also primary users). This task, called spectrum sensing, requires high precision in determining these gaps, maximizing the probability of detection. The design of spectrum sensing algorithms also requires innovative hardware and software solutions for real-time implementations. In this work, a technique to determine possible primary users' transmissions in a wide frequency interval (multiband spectrum sensing) from the perspective of cognitive radios is presented. The proposal is implemented in a real wireless communications environment using low-cost hardware considering the sample entropy as a decision rule. To validate its feasibility for real-time implementation, a simulated scenario was first tested. Simulation and real-time implementations results were compared with the Higuchi fractal dimension as a decision rule. The encouraging results show that sample entropy correctly detects noise or a possible primary user transmission, with a probability of success around 0.99, and the number of samples with errors at the start and end of frequency edges of transmissions is, on average, only 12 samples.

摘要

认知无线电是解决无线电频谱稀缺问题的一种切实可行的替代方案。这些无线电的主要任务之一是检测授权用户(也称为主用户)使用的给定带宽中可能存在的间隙。这项任务称为频谱感知,需要高精度地确定这些间隙,以最大化检测概率。频谱感知算法的设计还需要创新的硬件和软件解决方案来实现实时应用。在这项工作中,提出了一种从认知无线电的角度确定宽频间隔内(多频段频谱感知)可能的主用户传输的技术。该方案在实际无线通信环境中使用低成本硬件实现,将样本熵作为决策规则。为了验证其在实时实现中的可行性,首先对一个模拟场景进行了测试。将模拟和实时实现结果与作为决策规则的 Higuchi 分形维数进行了比较。令人鼓舞的结果表明,样本熵能够正确检测噪声或可能的主用户传输,成功概率约为 0.99,并且在传输频率边缘的起始和结束处出现错误的样本数量平均仅为 12 个。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4d87/8947343/71eaf815fcd8/entropy-24-00411-g001.jpg

相似文献

1
Multiband Spectrum Sensing Based on the Sample Entropy.
Entropy (Basel). 2022 Mar 15;24(3):411. doi: 10.3390/e24030411.
2
Real-Time Implementation of Multiband Spectrum Sensing Using SDR Technology.
Sensors (Basel). 2021 May 18;21(10):3506. doi: 10.3390/s21103506.
3
A Novel Multiband Spectrum Sensing Method Based on Wavelets and the Higuchi Fractal Dimension.
Sensors (Basel). 2019 Mar 16;19(6):1322. doi: 10.3390/s19061322.
4
Cooperative Multiband Spectrum Sensing Using Radio Environment Maps and Neural Networks.
Sensors (Basel). 2023 May 30;23(11):5209. doi: 10.3390/s23115209.
5
Machine Learning Techniques Applied to Multiband Spectrum Sensing in Cognitive Radios.
Sensors (Basel). 2019 Oct 30;19(21):4715. doi: 10.3390/s19214715.
7
Wideband Spectrum Sensing: A Bayesian Compressive Sensing Approach.
Sensors (Basel). 2018 Jun 5;18(6):1839. doi: 10.3390/s18061839.
8
Compressive sensing based maximum-minimum subband energy detection for cognitive radios.
Heliyon. 2020 Sep 15;6(9):e04906. doi: 10.1016/j.heliyon.2020.e04906. eCollection 2020 Sep.
10

引用本文的文献

本文引用的文献

1
Real-Time Implementation of Multiband Spectrum Sensing Using SDR Technology.
Sensors (Basel). 2021 May 18;21(10):3506. doi: 10.3390/s21103506.
2
A Novel Blind Signal Detector Based on the Entropy of the Power Spectrum Subband Energy Ratio.
Entropy (Basel). 2021 Apr 11;23(4):448. doi: 10.3390/e23040448.
4
A Distributed Testbed for 5G Scenarios: An Experimental Study.
Sensors (Basel). 2019 Dec 19;20(1):18. doi: 10.3390/s20010018.
5
Machine Learning Techniques Applied to Multiband Spectrum Sensing in Cognitive Radios.
Sensors (Basel). 2019 Oct 30;19(21):4715. doi: 10.3390/s19214715.
7
On the definition of signal-to-noise ratio and contrast-to-noise ratio for FMRI data.
PLoS One. 2013 Nov 6;8(11):e77089. doi: 10.1371/journal.pone.0077089. eCollection 2013.
8
Approximate entropy for all signals.
IEEE Eng Med Biol Mag. 2009 Nov-Dec;28(6):18-23. doi: 10.1109/MEMB.2009.934629.
9
Physiological time-series analysis using approximate entropy and sample entropy.
Am J Physiol Heart Circ Physiol. 2000 Jun;278(6):H2039-49. doi: 10.1152/ajpheart.2000.278.6.H2039.
10
Determining embedding dimension for phase-space reconstruction using a geometrical construction.
Phys Rev A. 1992 Mar 15;45(6):3403-3411. doi: 10.1103/physreva.45.3403.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验