用于认知无线电网络中实时多频段频谱感知的格拉姆角场与卷积神经网络
Gramian Angular Field and Convolutional Neural Networks for Real-Time Multiband Spectrum Sensing in Cognitive Radio Networks.
作者信息
Molina-Tenorio Yanqueleth, Prieto-Guerrero Alfonso, Rodriguez-Colina Enrique, Vásquez-Toledo Luis Alberto, Olvera-Guerrero Omar Alejandro
机构信息
Electrical Engineering Department, Universidad Autónoma Metropolitana-Iztapalapa, Av. Ferrocarril San Rafael Atlixco 186, Mexico City 09310, Mexico.
Universidad Politécnica de Chiapas, Carretera Tuxtla Gutierrez-Portillo Zaragoza km 21+500, Suchiapa 29150, Mexico.
出版信息
Sensors (Basel). 2025 Jun 6;25(12):3580. doi: 10.3390/s25123580.
Multiband spectrum sensing in a cooperative environment is a novel solution for efficient spectrum resource management under the cognitive radio networks (CRNs) paradigm. This paper presents a distinctive framework where a central entity collects power spectral density data from multiple geographically distributed secondary users and applies the Gramian angular field (GAF) summation method to transform the time-series data into image representations. A major contribution of this work is the integration of these GAF images with a convolutional neural network (CNN), enabling precise and real-time detection of primary user activity and spectrum occupancy. The proposed approach achieves 99.6% accuracy in determining spectrum occupancy, significantly outperforming traditional sensing techniques. The main contributions of this study are (i) the introduction of GAF-based image representations for cooperative spectrum sensing in CRNs; (ii) the development of a CNN-based classification framework for enhanced spectrum occupancy detection; and (iii) the demonstration of superior detection performance in dynamic, real-time environments.
协作环境下的多频段频谱感知是认知无线电网络(CRN)范式下高效频谱资源管理的一种新颖解决方案。本文提出了一个独特的框架,其中一个中心实体从多个地理上分散的次级用户收集功率谱密度数据,并应用格拉姆角场(GAF)求和方法将时间序列数据转换为图像表示。这项工作的一个主要贡献是将这些GAF图像与卷积神经网络(CNN)集成,从而能够精确实时地检测主用户活动和频谱占用情况。所提出的方法在确定频谱占用方面达到了99.6%的准确率,显著优于传统感知技术。本研究的主要贡献包括:(i)引入基于GAF的图像表示用于CRN中的协作频谱感知;(ii)开发基于CNN的分类框架以增强频谱占用检测;(iii)在动态实时环境中展示卓越的检测性能。
相似文献
Front Plant Sci. 2025-6-6
J Med Internet Res. 2021-7-2
MethodsX. 2025-5-28
J Imaging. 2025-5-28
本文引用的文献
Sensors (Basel). 2024-12-11
Sensors (Basel). 2023-5-30
Entropy (Basel). 2022-3-15
Sensors (Basel). 2021-5-18
Sensors (Basel). 2019-10-30