Suppr超能文献

深度学习辅助CT容积测量法用于活体肝移植右叶移植物重量估计的准确性和效率

Accuracy and Efficiency of Right-Lobe Graft Weight Estimation Using Deep-Learning-Assisted CT Volumetry for Living-Donor Liver Transplantation.

作者信息

Park Rohee, Lee Seungsoo, Sung Yusub, Yoon Jeeseok, Suk Heung-Il, Kim Hyoungjung, Choi Sanghyun

机构信息

Department of Radiology, Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.

Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.

出版信息

Diagnostics (Basel). 2022 Feb 25;12(3):590. doi: 10.3390/diagnostics12030590.

Abstract

CT volumetry (CTV) has been widely used for pre-operative graft weight (GW) estimation in living-donor liver transplantation (LDLT), and the use of a deep-learning algorithm (DLA) may further improve its efficiency. However, its accuracy has not been well determined. To evaluate the efficiency and accuracy of DLA-assisted CTV in GW estimation, we performed a retrospective study including 581 consecutive LDLT donors who donated a right-lobe graft. Right-lobe graft volume (GV) was measured on CT using the software implemented with the DLA for automated liver segmentation. In the development group ( = 207), a volume-to-weight conversion formula was constructed by linear regression analysis between the CTV-measured GV and the intraoperative GW. In the validation group ( = 374), the agreement between the estimated and measured GWs was assessed using the Bland-Altman 95% limit-of-agreement (LOA). The mean process time for GV measurement was 1.8 ± 0.6 min (range, 1.3-8.0 min). In the validation group, the GW was estimated using the volume-to-weight conversion formula (estimated GW [g] = 206.3 + 0.653 × CTV-measured GV [mL]), and the Bland-Altman 95% LOA between the estimated and measured GWs was -1.7% ± 17.1%. The DLA-assisted CT volumetry allows for time-efficient and accurate estimation of GW in LDLT.

摘要

CT容积测量法(CTV)已广泛用于活体肝移植(LDLT)术前移植物重量(GW)的估计,而使用深度学习算法(DLA)可能会进一步提高其效率。然而,其准确性尚未得到很好的确定。为了评估DLA辅助CTV在GW估计中的效率和准确性,我们进行了一项回顾性研究,纳入了581例连续捐献右叶移植物的LDLT供体。使用搭载DLA软件进行肝脏自动分割,在CT上测量右叶移植物体积(GV)。在开发组(n = 207)中,通过CTV测量的GV与术中GW之间的线性回归分析构建体积-重量转换公式。在验证组(n = 374)中,使用Bland-Altman 95%一致性界限(LOA)评估估计GW与测量GW之间的一致性。GV测量的平均处理时间为1.8±0.6分钟(范围1.3 - 8.0分钟)。在验证组中,使用体积-重量转换公式估计GW(估计GW[g] = 206.3 + 0.653×CTV测量的GV[mL]),估计GW与测量GW之间的Bland-Altman 95% LOA为-1.7%±17.1%。DLA辅助的CT容积测量法能够高效、准确地估计LDLT中的GW。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/611f/8946991/8988706c3ce3/diagnostics-12-00590-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验