文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电荷转换聚合物脂质体复合物克服阳离子脂质体在靶向线粒体药物递送中的局限性。

Charge Conversion Polymer-Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery.

机构信息

Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan.

School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.

出版信息

Int J Mol Sci. 2022 Mar 12;23(6):3080. doi: 10.3390/ijms23063080.


DOI:10.3390/ijms23063080
PMID:35328500
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8954455/
Abstract

Mitochondrial-targeting therapy is considered an important strategy for cancer treatment. (3-Carboxypropyl) triphenyl phosphonium (CTPP) is one of the candidate molecules that can drive drugs or nanomedicines to target mitochondria via electrostatic interactions. However, the mitochondrial-targeting effectiveness of CTPP is low. Therefore, pH-sensitive polymer-liposome complexes with charge-conversion copolymers and CTPP-containing cationic liposomes were designed for efficiently delivering an anti-cancer agent, ceramide, into cancer cellular mitochondria. The charge-conversion copolymers, methoxypoly(ethylene glycol)-block-poly(methacrylic acid-g-histidine), were anionic and helped in absorbing and shielding the positive charges of cationic liposomes at pH 7.4. In contrast, charge-conversion copolymers became neutral in order to depart from cationic liposomes and induced endosomal escape for releasing cationic liposomes into cytosol at acidic endosomes. The experimental results reveal that these pH-sensitive polymer-liposome complexes could rapidly escape from MCF-7 cell endosomes and target MCF-7 mitochondria within 3 h, thereby leading to the generation of reactive oxygen species and cell apoptosis. These findings provide a promising solution for cationic liposomes in cancer mitochondrial-targeting drug delivery.

摘要

线粒体靶向治疗被认为是癌症治疗的重要策略。(3-羧丙基)三苯基膦(CTPP)是一种候选分子,可以通过静电相互作用将药物或纳米药物驱动到线粒体。然而,CTPP 的线粒体靶向效率较低。因此,设计了具有电荷转换共聚物的 pH 敏感聚合物脂质体复合物和含有 CTPP 的阳离子脂质体,以有效地将抗癌剂神经酰胺递送至癌细胞线粒体。电荷转换共聚物甲氧基聚乙二醇-嵌段-聚(甲基丙烯酸-g-组氨酸)在 pH 7.4 时带负电荷,有助于吸收和屏蔽阳离子脂质体的正电荷。相比之下,电荷转换共聚物在酸性内涵体中变为中性,从而从阳离子脂质体上脱离,并诱导内涵体逃逸,将阳离子脂质体释放到细胞质中。实验结果表明,这些 pH 敏感聚合物脂质体复合物可以在 3 小时内迅速从 MCF-7 细胞内涵体中逃逸,并靶向 MCF-7 线粒体,从而导致活性氧的产生和细胞凋亡。这些发现为阳离子脂质体在癌症线粒体靶向药物传递中提供了一种有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fc8c4da410fa/ijms-23-03080-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/c8d07e4b9e7f/ijms-23-03080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/ea862760fbb6/ijms-23-03080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/aaca204a4466/ijms-23-03080-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fb5393a87041/ijms-23-03080-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/3d70016ff8b6/ijms-23-03080-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/6b68d0675696/ijms-23-03080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/2e5d1f070e07/ijms-23-03080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fc1e8f9b4cef/ijms-23-03080-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fc8c4da410fa/ijms-23-03080-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/c8d07e4b9e7f/ijms-23-03080-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/ea862760fbb6/ijms-23-03080-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/aaca204a4466/ijms-23-03080-g003a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fb5393a87041/ijms-23-03080-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/3d70016ff8b6/ijms-23-03080-g005a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/6b68d0675696/ijms-23-03080-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/2e5d1f070e07/ijms-23-03080-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fc1e8f9b4cef/ijms-23-03080-g008a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6712/8954455/fc8c4da410fa/ijms-23-03080-g009.jpg

相似文献

[1]
Charge Conversion Polymer-Liposome Complexes to Overcome the Limitations of Cationic Liposomes in Mitochondrial-Targeting Drug Delivery.

Int J Mol Sci. 2022-3-12

[2]
pH-responsive cationic liposome for endosomal escape mediated drug delivery.

Colloids Surf B Biointerfaces. 2020-1-16

[3]
pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery.

Int J Nanomedicine. 2015-10-1

[4]
pH-sensitive polymer-modified liposome-based immunity-inducing system: Effects of inclusion of cationic lipid and CpG-DNA.

Biomaterials. 2017-7-3

[5]
pH-responsive polymer-liposomes for intracellular drug delivery and tumor extracellular matrix switched-on targeted cancer therapy.

Biomaterials. 2014-4-4

[6]
Potentiation of pH-sensitive polymer-modified liposomes with cationic lipid inclusion as antigen delivery carriers for cancer immunotherapy.

Biomaterials. 2014-6-23

[7]
Delivering anti-cancer drugs with endosomal pH-sensitive anti-cancer liposomes.

Biomater Sci. 2016-1-25

[8]
Hyaluronan Reduces Cationic Liposome-Induced Toxicity and Enhances the Antitumor Effect of Targeted Gene Delivery in Mice.

ACS Appl Mater Interfaces. 2018-9-17

[9]
Cytoplasmic delivery of calcein mediated by liposomes modified with a pH-sensitive poly(ethylene glycol) derivative.

Biochim Biophys Acta. 1997-4-26

[10]
pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy.

Biomaterials. 2015-7-17

引用本文的文献

[1]
Fluorescent Polymer Nanocomposites as Novel Drug-Loading and Targeted Delivery Nanocarriers for Glioma Therapy by Modulating ERBB4.

J Fluoresc. 2024-12-18

[2]
Puerarin-Loaded Liposomes Co-Modified by Ischemic Myocardium-Targeting Peptide and Triphenylphosphonium Cations Ameliorate Myocardial Ischemia-Reperfusion Injury.

Int J Nanomedicine. 2024

[3]
Lipopolyplex-Mediated Co-Delivery of Doxorubicin and FAK siRNA to Enhance Therapeutic Efficiency of Treating Colorectal Cancer.

Pharmaceutics. 2023-2-10

[4]
Cancer Cell Models for the Development of Anti-Cancer Drugs.

Int J Mol Sci. 2022-11-21

本文引用的文献

[1]
Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis.

Front Immunol. 2021

[2]
Mitochondrion-specific dendritic lipopeptide liposomes for targeted sub-cellular delivery.

Nat Commun. 2021-4-22

[3]
Potential Mechanism Underlying the Role of Mitochondria in Breast Cancer Drug Resistance and Its Related Treatment Prospects.

Front Oncol. 2021-3-18

[4]
Autophagy and Cancer Dormancy.

Front Oncol. 2021-3-19

[5]
Targeting the Opening of Mitochondrial Permeability Transition Pores Potentiates Nanoparticle Drug Delivery and Mitigates Cancer Metastasis.

Adv Sci (Weinh). 2020-12-31

[6]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[7]
Systemic Therapy for Estrogen Receptor-Positive, HER2-Negative Breast Cancer.

N Engl J Med. 2020-12-24

[8]
Engineering precision nanoparticles for drug delivery.

Nat Rev Drug Discov. 2021-2

[9]
The lingering mysteries of metastatic recurrence in breast cancer.

Br J Cancer. 2021-1

[10]
Roles of mitochondria in the hallmarks of metastasis.

Br J Cancer. 2021-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索