Suppr超能文献

使用全卷积神经网络对伴有肿瘤病变的胸腔进行分割:一项直接对比的基准测试

Segmenting Thoracic Cavities with Neoplastic Lesions: A Head-to-head Benchmark with Fully Convolutional Neural Networks.

作者信息

Li Zhao, Li Rongbin, Kiser Kendall J, Giancardo Luca, Zheng W Jim

机构信息

School of Biomedical Informatics, UTHealth, Houston, Texas.

Department of Radiation Oncology, Washington University School of Medicine in St. Louis, St. Louis, Missouri.

出版信息

ACM BCB. 2021 Aug;2021. doi: 10.1145/3459930.3469564. Epub 2021 Aug 1.

Abstract

Automatic segmentation of thoracic cavity structures in computer tomography (CT) is a key step for applications ranging from radiotherapy planning to imaging biomarker discovery with radiomics approaches. State-of-the-art segmentation can be provided by fully convolutional neural networks such as the U-Net or V-Net. However, there is a very limited body of work on a comparative analysis of the performance of these architectures for chest CTs with significant neoplastic disease. In this work, we compared four different types of fully convolutional architectures using the same pre-processing and post-processing pipelines. These methods were evaluated using a dataset of CT images and thoracic cavity segmentations from 402 cancer patients. We found that these methods achieved very high segmentation performance by benchmarks of three evaluation criteria, i.e. Dice coefficient, average symmetric surface distance and 95% Hausdorff distance. Overall, the two-stage 3D U-Net model performed slightly better than other models, with Dice coefficients for left and right lung reaching 0.947 and 0.952, respectively. However, 3D U-Net model achieved the best performance under the evaluation of HD95 for right lung and ASSD for both left and right lung. These results demonstrate that the current state-of-art deep learning models can work very well for segmenting not only healthy lungs but also the lung containing different stages of cancerous lesions. The comprehensive types of lung masks from these evaluated methods enabled the creation of imaging-based biomarkers representing both healthy lung parenchyma and neoplastic lesions, allowing us to utilize these segmented areas for the downstream analysis, e.g. treatment planning, prognosis and survival prediction.

摘要

计算机断层扫描(CT)中胸腔结构的自动分割是从放射治疗计划到基于放射组学方法的影像生物标志物发现等应用的关键步骤。诸如U-Net或V-Net等全卷积神经网络可以提供最先进的分割方法。然而,对于这些架构在患有严重肿瘤疾病的胸部CT上的性能进行比较分析的研究非常有限。在这项工作中,我们使用相同的预处理和后处理管道比较了四种不同类型的全卷积架构。使用来自402名癌症患者的CT图像和胸腔分割数据集对这些方法进行了评估。我们发现,通过骰子系数、平均对称表面距离和95%豪斯多夫距离这三个评估标准的基准,这些方法实现了非常高的分割性能。总体而言,两阶段3D U-Net模型的表现略优于其他模型,左肺和右肺的骰子系数分别达到0.947和0.952。然而,3D U-Net模型在右肺的HD95以及左、右肺的ASSD评估下表现最佳。这些结果表明,当前最先进的深度学习模型不仅可以很好地分割健康的肺,还可以分割包含不同阶段癌性病变的肺。这些评估方法生成的多种类型的肺掩码能够创建代表健康肺实质和肿瘤性病变的基于影像的生物标志物,使我们能够利用这些分割区域进行下游分析,例如治疗计划、预后和生存预测。

相似文献

本文引用的文献

3
5
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
7
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验