Cory Michael B, Hostetler Zachary M, Kohli Rahul M
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
Methods Enzymol. 2022;664:151-171. doi: 10.1016/bs.mie.2022.01.009. Epub 2022 Jan 29.
The formation of macromolecular complexes containing multiple protein binding partners is at the core of many biochemical pathways. Studying the kinetics of complex formation can offer significant biological insights and complement static structural snapshots or approaches that reveal thermodynamic affinities. However, determining the kinetics of macromolecular complex formation can be difficult without significant manipulations to the system. Fluorescence anisotropy using a fluorophore-labeled constituent of the biologic complex offers potential advantages in obtaining time-resolved signals tracking complex assembly. However, an inherent challenge of traditional post-translational protein labeling is the orthogonality of labeling chemistry with regards to protein target and the potential disruption of complex formation. In this chapter, we will discuss the application of unnatural amino acid labeling as a means for generating a minimally perturbing reporter. We then describe the use of fluorescence anisotropy to define the kinetics of complex formation, using the key protein-protein-nucleic acid complex governing the bacterial DNA damage response-RecA nucleoprotein filaments binding to LexA-as a model system. We will also show how this assay can be expanded to ask questions about the kinetics of complex formation for unlabeled variants, thus assessing assembly kinetics in more native contexts and broadening its utility. We discuss the optimization process for our model system and offer guidelines for applying the same principles to other macromolecular systems.
包含多个蛋白质结合伙伴的大分子复合物的形成是许多生化途径的核心。研究复合物形成的动力学可以提供重要的生物学见解,并补充揭示热力学亲和力的静态结构快照或方法。然而,如果不对系统进行重大操作,确定大分子复合物形成的动力学可能会很困难。使用生物复合物的荧光团标记成分进行荧光各向异性分析,在获取跟踪复合物组装的时间分辨信号方面具有潜在优势。然而,传统的翻译后蛋白质标记的一个固有挑战是标记化学相对于蛋白质靶点的正交性以及复合物形成的潜在破坏。在本章中,我们将讨论非天然氨基酸标记作为一种产生最小干扰报告分子的方法的应用。然后,我们将描述使用荧光各向异性来定义复合物形成的动力学,以控制细菌DNA损伤反应的关键蛋白质-蛋白质-核酸复合物——RecA核蛋白丝与LexA的结合——作为模型系统。我们还将展示如何扩展该分析方法,以研究未标记变体的复合物形成动力学,从而在更天然的环境中评估组装动力学并扩大其用途。我们讨论了我们模型系统的优化过程,并为将相同原理应用于其他大分子系统提供指导。