Suppr超能文献

疟原虫 SUMO 途径蛋白关键节点依赖性单向串扰的意义。

Implications of critical node-dependent unidirectional cross-talk of Plasmodium SUMO pathway proteins.

机构信息

Biomolecular NMR Spectroscopy Laboratory, Department of Biosciences and Bioengineering, IIT Bombay, Powai, Maharashtra, India.

Nups and SUMO Biology Group, Department of Biological Sciences, IISER Bhopal, Bhopal, Madhya Pradesh, India.

出版信息

Biophys J. 2022 Apr 19;121(8):1367-1380. doi: 10.1016/j.bpj.2022.03.022. Epub 2022 Mar 21.

Abstract

The endoparasitic pathogen, Plasmodium falciparum (Pf), modulates protein-protein interactions to employ post-translational modifications like SUMOylation to establish successful infections. The interaction between E1 and E2 (Ubc9) enzymes governs species specificity in the Plasmodium SUMOylation pathway. Here, we demonstrate that a unidirectional cross-species interaction exists between Pf-SUMO and human E2, whereas Hs-SUMO1 failed to interact with Pf-E2. Biochemical and biophysical analyses revealed that surface-accessible aspartates of Pf-SUMO determine the efficacy and specificity of SUMO-Ubc9 interactions. Furthermore, we demonstrate that critical residues of the Pf-Ubc9 N terminus are responsible for diminished Hs-SUMO1 and Pf-Ubc9 interaction. Mutating these residues to corresponding Hs-Ubc9 residues restores electrostatic, π-π, and hydrophobic interactions and allows efficient cross-species interactions. We suggest that, in comparison with human counterparts, Plasmodium SUMO and Ubc9 proteins have acquired critical changes on their surfaces as nodes, which Plasmodium can use to exploit the host SUMOylation machinery.

摘要

内寄生病原体疟原虫(Pf)调节蛋白-蛋白相互作用,采用翻译后修饰(如 SUMO 化)来建立成功的感染。E1 和 E2(Ubc9)酶之间的相互作用控制着疟原虫 SUMO 化途径中的物种特异性。在这里,我们证明 Pf-SUMO 与人类 E2 之间存在单向种间相互作用,而 Hs-SUMO1 未能与 Pf-E2 相互作用。生化和生物物理分析表明,Pf-SUMO 的表面可及天冬氨酸决定了 SUMO-Ubc9 相互作用的效力和特异性。此外,我们证明 Pf-Ubc9 N 端的关键残基负责降低 Hs-SUMO1 和 Pf-Ubc9 相互作用。将这些残基突变为相应的 Hs-Ubc9 残基可以恢复静电、π-π 和疏水性相互作用,并允许有效的种间相互作用。我们认为,与人类对应物相比,疟原虫 SUMO 和 Ubc9 蛋白在其表面获得了作为节点的关键变化,疟原虫可以利用这些节点来利用宿主 SUMO 化机制。

相似文献

1
Implications of critical node-dependent unidirectional cross-talk of Plasmodium SUMO pathway proteins.
Biophys J. 2022 Apr 19;121(8):1367-1380. doi: 10.1016/j.bpj.2022.03.022. Epub 2022 Mar 21.
2
Structural insights into the regulation of the human E2∼SUMO conjugate through analysis of its stable mimetic.
J Biol Chem. 2023 Jul;299(7):104870. doi: 10.1016/j.jbc.2023.104870. Epub 2023 May 27.
3
Identification of a non-covalent ternary complex formed by PIAS1, SUMO1, and UBC9 proteins involved in transcriptional regulation.
J Biol Chem. 2013 Dec 20;288(51):36312-27. doi: 10.1074/jbc.M113.486845. Epub 2013 Oct 30.
5
Rhes, a physiologic regulator of sumoylation, enhances cross-sumoylation between the basic sumoylation enzymes E1 and Ubc9.
J Biol Chem. 2010 Jul 2;285(27):20428-32. doi: 10.1074/jbc.C110.127191. Epub 2010 Apr 27.
7
Site-specific inhibition of the small ubiquitin-like modifier (SUMO)-conjugating enzyme Ubc9 selectively impairs SUMO chain formation.
J Biol Chem. 2017 Sep 15;292(37):15340-15351. doi: 10.1074/jbc.M117.794255. Epub 2017 Aug 7.
8
Enhanced SUMOylation of proteins containing a SUMO-interacting motif by SUMO-Ubc9 fusion.
Biochem Biophys Res Commun. 2009 Oct 9;388(1):41-5. doi: 10.1016/j.bbrc.2009.07.103. Epub 2009 Jul 25.
9
Dynamin interacts with members of the sumoylation machinery.
J Biol Chem. 2004 Jul 23;279(30):31445-54. doi: 10.1074/jbc.M402911200. Epub 2004 Apr 30.
10
Alternative allosteric mechanisms can regulate the substrate and E2 in SUMO conjugation.
J Mol Biol. 2011 Mar 4;406(4):620-30. doi: 10.1016/j.jmb.2010.12.044. Epub 2011 Jan 7.

本文引用的文献

1
SUMO and SUMOylation Pathway at the Forefront of Host Immune Response.
Front Cell Dev Biol. 2021 Jul 14;9:681057. doi: 10.3389/fcell.2021.681057. eCollection 2021.
2
Targeting SUMOylation in as a Potential Target for Malaria Therapy.
Front Cell Infect Microbiol. 2021 Jun 10;11:685866. doi: 10.3389/fcimb.2021.685866. eCollection 2021.
3
The disruption of protein-protein interactions as a therapeutic strategy for prostate cancer.
Pharmacol Res. 2020 Nov;161:105145. doi: 10.1016/j.phrs.2020.105145. Epub 2020 Aug 16.
4
SUMOylation of periplakin is critical for efficient reorganization of keratin filament network.
Mol Biol Cell. 2019 Feb 1;30(3):357-369. doi: 10.1091/mbc.E18-04-0244. Epub 2018 Dec 5.
5
Immune Response and Evasion Mechanisms of Parasites.
J Immunol Res. 2018 Mar 25;2018:6529681. doi: 10.1155/2018/6529681. eCollection 2018.
6
SUMO conjugation - a mechanistic view.
Biomol Concepts. 2017 Mar 1;8(1):13-36. doi: 10.1515/bmc-2016-0030.
7
A high throughput mutagenic analysis of yeast sumo structure and function.
PLoS Genet. 2017 Feb 6;13(2):e1006612. doi: 10.1371/journal.pgen.1006612. eCollection 2017 Feb.
8
Immune Escape Strategies of Malaria Parasites.
Front Microbiol. 2016 Oct 17;7:1617. doi: 10.3389/fmicb.2016.01617. eCollection 2016.
9
Backbone and side-chain resonance assignments of Plasmodium falciparum SUMO.
Biomol NMR Assign. 2017 Apr;11(1):17-20. doi: 10.1007/s12104-016-9712-9. Epub 2016 Oct 3.
10
Detection of SUMOylation in Plasmodium falciparum.
Methods Mol Biol. 2016;1475:283-90. doi: 10.1007/978-1-4939-6358-4_19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验