Suppr超能文献

Bridging the μHz Gap in the Gravitational-Wave Landscape with Binary Resonances.

作者信息

Blas Diego, Jenkins Alexander C

机构信息

Grup de Física Teòrica, Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.

Institut de Fisica d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, 08193 Bellaterra, Spain.

出版信息

Phys Rev Lett. 2022 Mar 11;128(10):101103. doi: 10.1103/PhysRevLett.128.101103.

Abstract

Gravitational-wave (GW) astronomy is transforming our understanding of the Universe by probing phenomena invisible to electromagnetic observatories. A comprehensive exploration of the GW frequency spectrum is essential to fully harness this potential. Remarkably, current methods have left the μHz frequency band almost untouched. Here, we show that this μHz gap can be filled by searching for deviations in the orbits of binary systems caused by their resonant interaction with GWs. In particular, we show that laser ranging of the Moon and artificial satellites around the Earth, as well as timing of binary pulsars, may discover the first GW signals in this band, or otherwise set stringent new constraints. To illustrate the discovery potential of these binary resonance searches, we consider the GW signal from a cosmological first-order phase transition, showing that our methods will probe models of the early Universe that are inaccessible to any other near-future GW mission. We also discuss how our methods can shed light on the possible GW signal detected by NANOGrav, either constraining its spectral properties or even giving an independent confirmation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验