Suppr超能文献

MAFFNet:用于自动驾驶的具有RGB-D语义分割的实时多级注意力特征融合网络

MAFFNet: real-time multi-level attention feature fusion network with RGB-D semantic segmentation for autonomous driving.

作者信息

Lv Tongfei, Zhang Yu, Luo Lin, Gao Xiaorong

出版信息

Appl Opt. 2022 Mar 20;61(9):2219-2229. doi: 10.1364/AO.449589.

Abstract

Compared with RGB semantic segmentation, RGB-D semantic segmentation can combine the geometric depth information to effectively improve the segmentation accuracy. Considering the application of RGB-D semantic segmentation in autonomous driving, we design a real-time semantic segmentation network, that is, MAFFNet, which can effectively extract depth features and combine the complementary information in RGB and depth. We also design a multi-level attention feature fusion module that can excavate the available context information of RGB and depth features. At the same time, its inference speed can also meet the demands of autonomous driving. Experiments show that our network achieves excellent performance of 74.4% mIoU and an inference speed of 15.9 Hz at a full resolution of 2048×1024 on the cityscapes dataset. Using multi-source learning, we mixed the cityscapes and lost and found as the multi-dataset. Our network is also superior to previous algorithms in using the multi-dataset to detect small obstacles outside the road.

摘要

与RGB语义分割相比,RGB-D语义分割可以结合几何深度信息,有效提高分割精度。考虑到RGB-D语义分割在自动驾驶中的应用,我们设计了一种实时语义分割网络,即MAFFNet,它可以有效提取深度特征,并结合RGB和深度中的互补信息。我们还设计了一个多级注意力特征融合模块,该模块可以挖掘RGB和深度特征的可用上下文信息。同时,其推理速度也能满足自动驾驶的需求。实验表明,我们的网络在cityscapes数据集上以2048×1024的全分辨率实现了74.4%的mIoU的优异性能和15.9 Hz的推理速度。使用多源学习,我们将cityscapes和失物招领数据集混合作为多数据集。在使用多数据集检测道路外的小障碍物方面,我们的网络也优于先前的算法。

相似文献

6
Rethinking 1D convolution for lightweight semantic segmentation.重新思考用于轻量级语义分割的一维卷积
Front Neurorobot. 2023 Feb 9;17:1119231. doi: 10.3389/fnbot.2023.1119231. eCollection 2023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验