Suppr超能文献

物种级树冠图提高了热带景观中树木幼苗丰度的预测精度。

Species-level tree crown maps improve predictions of tree recruit abundance in a tropical landscape.

机构信息

Biological Sciences, Boise State University, Boise, Idaho, USA.

Nelson Institute for Environmental Studies, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Ecol Appl. 2022 Jul;32(5):e2585. doi: 10.1002/eap.2585. Epub 2022 Apr 28.

Abstract

Predicting forest recovery at landscape scales will aid forest restoration efforts. The first step in successful forest recovery is tree recruitment. Forecasts of tree recruit abundance, derived from the landscape-scale distribution of seed sources (i.e., adult trees), could assist efforts to identify sites with high potential for natural regeneration. However, previous work revealed wide variation in the effect of seed sources on seedling abundance, from positive to no effect. We quantified the relationship between adult tree seed sources and tree recruits and predicted where natural recruitment would occur in a fragmented, tropical, agricultural landscape. We integrated species-specific tree crown maps generated from hyperspectral imagery and property ownership data with field data on the spatial distribution of tree recruits from five species. We then developed hierarchical Bayesian models to predict landscape-scale recruit abundance. Our models revealed that species-specific maps of tree crowns improved recruit abundance predictions. Conspecific crown area had a much stronger impact on recruitment abundance (8.00% increase in recruit abundance when conspecific tree density increases from zero to one tree; 95% credible interval (CI): 0.80% to 11.57%) than heterospecific crown area (0.03% increase with the addition of a single heterospecific tree, 95% CI: -0.60% to 0.68%). Individual property ownership was also an important predictor of recruit abundance: The best performing model had varying effects of conspecific and heterospecific crown area on recruit abundance, depending on individual property ownership. We demonstrate how novel remote sensing approaches and cadastral data can be used to generate high-resolution and landscape-level maps of tree recruit abundance. Spatial models parameterized with field, cadastral, and remote sensing data are poised to assist decision support for forest landscape restoration.

摘要

预测景观尺度上的森林恢复将有助于森林恢复工作。成功森林恢复的第一步是树木繁殖。通过预测种子源(即成年树木)在景观尺度上的分布情况,可以预测树木繁殖体的丰度,从而有助于确定具有自然再生潜力的高潜力地点。然而,以前的工作表明,种子源对幼苗丰度的影响差异很大,从正效应到无效应都有。我们量化了成年树种子源与树木繁殖体之间的关系,并预测了在一个破碎的、热带的、农业景观中自然繁殖将发生的地方。我们将来自高光谱图像的特定物种的树冠图与土地所有权数据以及来自五个物种的树木繁殖体空间分布的实地数据相结合。然后,我们开发了分层贝叶斯模型来预测景观尺度上的繁殖体丰度。我们的模型表明,特定物种的树冠图提高了繁殖体丰度的预测。同物种树冠面积对繁殖体丰度的影响要大得多(当同物种树木密度从零增加到一树木时,繁殖体丰度增加 8.00%;95%可信区间(CI):0.80%至 11.57%),而异物种树冠面积的影响则要小得多(增加一棵异物种树木,繁殖体丰度增加 0.03%;95%CI:-0.60%至 0.68%)。个体土地所有权也是繁殖体丰度的一个重要预测因子:表现最好的模型中,同物种和异物种树冠面积对繁殖体丰度的影响取决于个体土地所有权。我们展示了如何使用新的遥感方法和地籍数据来生成树木繁殖体丰度的高分辨率和景观尺度图。基于实地、地籍和遥感数据参数化的空间模型有望为森林景观恢复的决策支持提供帮助。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验