Suppr超能文献

中心度测度对多重网络链路预测中共同邻居的影响。

Impact of Centrality Measures on the Common Neighbors in Link Prediction for Multiplex Networks.

机构信息

Department of Information Technology and Communications, Azarbaijan Shahid Madani University, Tabriz, Iran.

School of Computer Science, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Australia.

出版信息

Big Data. 2022 Apr;10(2):138-150. doi: 10.1089/big.2021.0254. Epub 2022 Mar 25.

Abstract

Complex networks are representations of real-world systems that can be better modeled as multiplex networks, where the same nodes develop multi-type connections. One of the important concerns about these networks is link prediction, which has many applications in social networks and recommender systems. In this article, similarity-based methods such as common neighbors (CNs) are the mainstream. However, in the CN method, the contribution of each CN in the likelihood of new connections is equally taken into account. In this work, we propose a new link prediction method namely Weighted Common Neighbors (WCN), which is based on CNs and various types of Centrality measures (including degree, k-core, closeness, betweenness, Eigenvector, and PageRank) to predict the formation of new links in multiplex networks. So, in this model, each CN has a different impact on the node connection likelihood. Moreover, we investigate the impact of interlayer information on improving the performance of link prediction in the target layer. Using Area under the ROC Curve and precision as evaluation metrics, we perform a comprehensive experimental evaluation of our proposed method on seven real multiplex networks. The results validate the improved performance of our proposed method compared with existing methods, and we show that the performance of proposed methods is significantly improved while using interlayer information in multiplex networks.

摘要

复杂网络是对真实系统的表示,可以更好地建模为多重网络,其中相同的节点发展出多种类型的连接。这些网络的一个重要关注点是链路预测,它在社交网络和推荐系统中有许多应用。在本文中,基于相似性的方法,如共同邻居(CNs)是主流。然而,在 CN 方法中,每个 CN 在新连接可能性中的贡献被同等考虑。在这项工作中,我们提出了一种新的链路预测方法,即加权共同邻居(WCN),它基于 CN 和各种类型的中心性度量(包括度、k-核、接近度、介数、特征向量和 PageRank)来预测多重网络中新链路的形成。因此,在这个模型中,每个 CN 对节点连接的可能性有不同的影响。此外,我们研究了跨层信息对提高目标层链路预测性能的影响。使用 ROC 曲线下面积和精度作为评估指标,我们在七个真实的多重网络上对我们提出的方法进行了全面的实验评估。结果验证了与现有方法相比,我们提出的方法的性能得到了提高,并且我们表明,在多重网络中使用跨层信息时,我们提出的方法的性能得到了显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验