Suppr超能文献

一种用于加权多重网络中链接预测的有效方法。

An efficient method for link prediction in weighted multiplex networks.

作者信息

Sharma Shikhar, Singh Anurag

机构信息

Cluster Innovation Centre, University of Delhi, Delhi, 110007 India.

Department of Computer Science and Engineering, National Institute of Technology Delhi, Delhi, 110040 India.

出版信息

Comput Soc Netw. 2016;3(1):7. doi: 10.1186/s40649-016-0034-y. Epub 2016 Nov 5.

Abstract

BACKGROUND

A great variety of artificial and natural systems can be abstracted into a set of entities interacting with each other. Such abstractions can very well represent the underlying dynamics of the system when modeled as the network of vertices coupled by edges. Prediction of dynamics in these structures based on topological attribute or dependency relations is an important task. Link Prediction in such complex networks is regarded useful in almost all types of networks as it can be used to extract missing information, identify spurious interactions, and evaluate network evolving mechanisms. Various similarity and likelihood-based indices have been employed to infer different topological and relation-based information to form a link prediction algorithm. These algorithms, however, are too specific to the domain and do not encapsulate the generic nature of the real-world information. In most natural and engineered systems, the entities are linked with multiple types of associations and relations which play a factor in the dynamics of the network. It forms multiple subsystems or multiple layers of networked information. These networks are regarded as Multiplex Networks.

METHODS

This work presents an approach for link prediction in Multiplex networks where the associations are learned from the multiple layers of networks for link prediction purposes. Most of the real-world networks are represented as weighted networks. Weight prediction coupled with Link Prediction can be of great use. Link scores are received using various similarity measures and used to predict weights. This work further proposes and testifies a strategy for weight prediction.

RESULTS AND CONCLUSIONS

This work successfully proposes an algorithm for Weight Prediction using Link similarity measures on multiplex networks. The predicted weights show very less deviation from their actual weights. In comparison to other indices, the proposed method has a far low error rate and outperforms them concerning the metric performance NRMSE.

摘要

背景

各种各样的人工和自然系统都可以抽象为一组相互作用的实体。当将这些抽象建模为通过边耦合的顶点网络时,它们可以很好地表示系统的潜在动态。基于拓扑属性或依赖关系预测这些结构中的动态是一项重要任务。在这种复杂网络中的链路预测在几乎所有类型的网络中都被认为是有用的,因为它可用于提取缺失信息、识别虚假相互作用以及评估网络演化机制。已经采用了各种基于相似性和似然性的指标来推断不同的拓扑和基于关系的信息,以形成链路预测算法。然而,这些算法过于特定于领域,没有封装现实世界信息的一般性质。在大多数自然和工程系统中,实体通过多种类型的关联和关系相连,这些关联和关系在网络动态中起作用。它形成了多个子系统或多层网络信息。这些网络被视为多重网络。

方法

这项工作提出了一种在多重网络中进行链路预测的方法,其中从多层网络中学习关联以用于链路预测目的。大多数现实世界的网络都表示为加权网络。权重预测与链路预测相结合可能会非常有用。使用各种相似性度量来接收链路分数,并用于预测权重。这项工作进一步提出并验证了一种权重预测策略。

结果与结论

这项工作成功地提出了一种在多重网络上使用链路相似性度量进行权重预测的算法。预测的权重与实际权重的偏差非常小。与其他指标相比,所提出的方法具有极低的错误率,并且在度量性能NRMSE方面优于它们。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/40cd/5748725/fadcf861a712/40649_2016_34_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验