Na Xiaodong, Ren Weijie, Liu Moran, Han Min
IEEE Trans Neural Netw Learn Syst. 2023 Nov;34(11):9302-9313. doi: 10.1109/TNNLS.2022.3157830. Epub 2023 Oct 27.
Echo state network (ESN), a type of special recurrent neural network with a large-scale randomly fixed hidden layer (called a reservoir) and an adaptable linear output layer, has been widely employed in the field of time series analysis and modeling. However, when tackling the problem of multidimensional chaotic time series prediction, due to the randomly generated rules for input and reservoir weights, not only the representation of valuable variables is enriched but also redundant and irrelevant information is accumulated inevitably. To remove the redundant components, reduce the approximate collinearity among echo-state information, and improve the generalization and stability, a new method called hierarchical ESN with sparse learning (HESN-SL) is proposed. The HESN-SL mines and captures the latent evolution patterns hidden from the dynamic system by means of layer-by-layer processing in stacked reservoirs, and leverage monotone accelerated proximal gradient algorithm to train a sparse output layer with variable selection capability. Meanwhile, we further prove that the HESN-SL satisfies the echo state property, which guarantees the stability and convergence of the proposed model when applied to time series prediction. Experimental results on two synthetic chaotic systems and a real-world meteorological dataset illustrate the proposed HESN-SL outperforms both original ESN and existing hierarchical ESN-based models for multidimensional chaotic time series prediction.
回声状态网络(ESN)是一种特殊的递归神经网络,具有大规模随机固定的隐藏层(称为储备池)和自适应线性输出层,已广泛应用于时间序列分析和建模领域。然而,在处理多维混沌时间序列预测问题时,由于输入和储备池权重的随机生成规则,不仅丰富了有价值变量的表示,还不可避免地积累了冗余和无关信息。为了去除冗余成分,减少回声状态信息之间的近似共线性,并提高泛化能力和稳定性,提出了一种名为具有稀疏学习的分层ESN(HESN-SL)的新方法。HESN-SL通过在堆叠储备池中进行逐层处理,挖掘并捕捉动态系统中隐藏的潜在演化模式,并利用单调加速近端梯度算法训练具有变量选择能力的稀疏输出层。同时,我们进一步证明了HESN-SL满足回声状态属性,这保证了所提出的模型在应用于时间序列预测时的稳定性和收敛性。在两个合成混沌系统和一个真实世界气象数据集上的实验结果表明,所提出的HESN-SL在多维混沌时间序列预测方面优于原始ESN和现有的基于分层ESN的模型。