IEEE Trans Cybern. 2022 Apr;52(4):2163-2173. doi: 10.1109/TCYB.2020.2977375. Epub 2022 Apr 5.
Multivariate time-series prediction is a challenging research topic in the field of time-series analysis and modeling, and is continually under research. The echo state network (ESN), a type of efficient recurrent neural network, has been widely used in time-series prediction, but when using ESN, two crucial problems have to be confronted: 1) how to select the optimal subset of input features and 2) how to set the suitable parameters of the model. To solve this problem, the modified biogeography-based optimization ESN (MBBO-ESN) system is proposed for system modeling and multivariate time-series prediction, which can simultaneously achieve feature subset selection and model parameter optimization. The proposed MBBO algorithm is an improved evolutionary algorithm based on biogeography-based optimization (BBO), which utilizes an S -type population migration rate model, a covariance matrix migration strategy, and a Lévy distribution mutation strategy to enhance the rotation invariance and exploration ability. Furthermore, the MBBO algorithm cannot only optimize the key parameters of the ESN model but also uses a hybrid-metric feature selection method to remove the redundancies and distinguish the importance of the input features. Compared with the traditional methods, the proposed MBBO-ESN system can discover the relationship between the input features and the model parameters automatically and make the prediction more accurate. The experimental results on the benchmark and real-world datasets demonstrate that MBBO outperforms the other traditional evolutionary algorithms, and the MBBO-ESN system is more competitive in multivariate time-series prediction than other classic machine-learning models.
多变量时间序列预测是时间序列分析和建模领域的一个具有挑战性的研究课题,目前仍在不断研究中。回声状态网络(ESN)是一种高效的递归神经网络,已被广泛应用于时间序列预测,但在使用 ESN 时,必须面对两个关键问题:1)如何选择输入特征的最优子集,2)如何设置模型的合适参数。为了解决这个问题,提出了用于系统建模和多变量时间序列预测的改进基于生物地理学优化的回声状态网络(MBBO-ESN)系统,该系统可以同时实现特征子集选择和模型参数优化。所提出的 MBBO 算法是一种基于生物地理学优化(BBO)的改进进化算法,它利用 S 型种群迁移率模型、协方差矩阵迁移策略和 Lévy 分布突变策略来增强旋转不变性和探索能力。此外,MBBO 算法不仅可以优化 ESN 模型的关键参数,还可以使用混合度量特征选择方法来去除输入特征的冗余并区分其重要性。与传统方法相比,所提出的 MBBO-ESN 系统可以自动发现输入特征与模型参数之间的关系,并使预测更加准确。基准和实际数据集上的实验结果表明,MBBO 优于其他传统的进化算法,并且 MBBO-ESN 系统在多变量时间序列预测方面比其他经典机器学习模型更具竞争力。