Department of Statistics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Centre for Molecular Medicine and Therapeutics, Vancouver, British Columbia V5Z 4H4, Canada.
Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada.
Dev Cogn Neurosci. 2022 Apr;54:101096. doi: 10.1016/j.dcn.2022.101096. Epub 2022 Mar 14.
Electroencephalography (EEG) has been widely adopted by the developmental cognitive neuroscience community, but the application of machine learning (ML) in this domain lags behind adult EEG studies. Applying ML to infant data is particularly challenging due to the low number of trials, low signal-to-noise ratio, high inter-subject variability, and high inter-trial variability. Here, we provide a step-by-step tutorial on how to apply ML to classify cognitive states in infants. We describe the type of brain attributes that are widely used for EEG classification and also introduce a Riemannian geometry based approach for deriving connectivity estimates that account for inter-trial and inter-subject variability. We present pipelines for learning classifiers using trials from a single infant and from multiple infants, and demonstrate the application of these pipelines on a standard infant EEG dataset of forty 12-month-old infants collected under an auditory oddball paradigm. While we classify perceptual states induced by frequent versus rare stimuli, the presented pipelines can be easily adapted for other experimental designs and stimuli using the associated code that we have made publicly available.
脑电图(EEG)已被发展认知神经科学界广泛采用,但机器学习(ML)在这一领域的应用落后于成人 EEG 研究。由于试验次数少、信噪比低、个体间变异性高和试验间变异性高,将 ML 应用于婴儿数据尤其具有挑战性。在这里,我们提供了一个分步教程,介绍如何将 ML 应用于分类婴儿的认知状态。我们描述了广泛用于 EEG 分类的脑属性类型,并介绍了一种基于黎曼几何的方法,用于得出考虑试验间和个体间变异性的连通性估计值。我们提出了使用单个婴儿和多个婴儿的试验来学习分类器的管道,并展示了这些管道在一个标准的 12 个月大婴儿 EEG 数据集上的应用,该数据集是在听觉Oddball 范式下收集的。虽然我们对由频繁刺激和罕见刺激引起的感知状态进行分类,但所提出的管道可以使用我们公开提供的相关代码轻松适应其他实验设计和刺激。