Suppr超能文献

一种用于对模拟钻孔任务中有无触觉反馈时收集的脑电图(EEG)数据进行分类的机器学习方法。

A Machine Learning Approach to Classifying EEG Data Collected with or without Haptic Feedback during a Simulated Drilling Task.

作者信息

Ramirez Campos Michael S, McCracken Heather S, Uribe-Quevedo Alvaro, Grant Brianna L, Yielder Paul C, Murphy Bernadette A

机构信息

Faculty of Health Sciences, Ontario Tech University, Oshawa, ON L1G 0C5, Canada.

Department of Biomedical Engineering, University Colombian School of Engineering Julio Garavito, Bogota 111166, Colombia.

出版信息

Brain Sci. 2024 Aug 31;14(9):894. doi: 10.3390/brainsci14090894.

Abstract

Artificial Intelligence (AI), computer simulations, and virtual reality (VR) are increasingly becoming accessible tools that can be leveraged to implement training protocols and educational resources. Typical assessment tools related to sensory and neural processing associated with task performance in virtual environments often rely on self-reported surveys, unlike electroencephalography (EEG), which is often used to compare the effects of different types of sensory feedback (e.g., auditory, visual, and haptic) in simulation environments in an objective manner. However, it can be challenging to know which aspects of the EEG signal represent the impact of different types of sensory feedback on neural processing. Machine learning approaches offer a promising direction for identifying EEG signal features that differentiate the impact of different types of sensory feedback during simulation training. For the current study, machine learning techniques were applied to differentiate neural circuitry associated with haptic and non-haptic feedback in a simulated drilling task. Nine EEG channels were selected and analyzed, extracting different time-domain, frequency-domain, and nonlinear features, where 360 features were tested (40 features per channel). A feature selection stage identified the most relevant features, including the Hurst exponent of 13-21 Hz, kurtosis of 21-30 Hz, power spectral density of 21-30 Hz, variance of 21-30 Hz, and spectral entropy of 13-21 Hz. Using those five features, trials with haptic feedback were correctly identified from those without haptic feedback with an accuracy exceeding 90%, increasing to 99% when using 10 features. These results show promise for the future application of machine learning approaches to predict the impact of haptic feedback on neural processing during VR protocols involving drilling tasks, which can inform future applications of VR and simulation for occupational skill acquisition.

摘要

人工智能(AI)、计算机模拟和虚拟现实(VR)正日益成为可利用的工具,以实施培训方案和教育资源。与虚拟环境中任务表现相关的感官和神经处理的典型评估工具通常依赖自我报告调查,而脑电图(EEG)则不同,它常用于以客观方式比较模拟环境中不同类型感官反馈(如听觉、视觉和触觉)的效果。然而,要知道EEG信号的哪些方面代表不同类型感官反馈对神经处理的影响可能具有挑战性。机器学习方法为识别EEG信号特征提供了一个有前景的方向,这些特征可区分模拟训练期间不同类型感官反馈的影响。在当前研究中,应用机器学习技术在模拟钻孔任务中区分与触觉和非触觉反馈相关的神经回路。选择并分析了9个EEG通道,提取不同的时域、频域和非线性特征,共测试了360个特征(每个通道40个特征)。一个特征选择阶段确定了最相关的特征,包括13 - 21 Hz的赫斯特指数、21 - 30 Hz的峰度、21 - 30 Hz的功率谱密度、21 - 30 Hz的方差以及13 - 21 Hz的谱熵。使用这五个特征,触觉反馈试验能够从无触觉反馈的试验中被正确识别,准确率超过90%,使用10个特征时准确率提高到99%。这些结果为机器学习方法在涉及钻孔任务的VR协议中预测触觉反馈对神经处理的影响的未来应用显示出前景,这可为VR和模拟在职业技能获取方面的未来应用提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b9c1/11429552/61f9e127eda5/brainsci-14-00894-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验