Suppr超能文献

纳入目前已诊断或治疗的个体进行抑郁筛查工具准确性研究:2018-2021 年发表的研究的元研究综述。

Inclusion of currently diagnosed or treated individuals in studies of depression screening tool accuracy: a meta-research review of studies published in 2018-2021.

机构信息

Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.

Centre for Prognosis Research, School of Medicine, Keele University, Staffordshire, UK.

出版信息

Gen Hosp Psychiatry. 2022 May-Jun;76:25-30. doi: 10.1016/j.genhosppsych.2022.02.005. Epub 2022 Feb 22.

Abstract

OBJECTIVES

Screening is done to improve health outcomes by identifying and effectively treating individuals with unrecognized conditions. Depression screening has been proposed to identify previously unrecognized depression cases. Including individuals already diagnosed or treated for depression in screening test accuracy studies could exaggerate accuracy and the yield of new cases from screening. The present study investigated (1) the proportion of depression screening tool accuracy primary studies published in 2018-2021 that excluded individuals with a confirmed depression diagnosis or who were already undergoing treatment; and (2) whether this has improved since the last review of studies published in 2013-2015, which found that five of 89 (5.6%) primary studies appropriately excluded such individuals.

METHODS

MEDLINE was searched from January 1, 2018 through May 21, 2021 for primary studies on depression screening tool accuracy.

RESULTS

Eighteen of 106 (17.0%; 95% Confidence Interval [CI], 11.0% to 25.3%) primary studies excluded currently diagnosed or treated individuals. This was 11.4% (95% CI, 2.8% to 20.0%) greater than in similar studies published in 2013-2015.

CONCLUSION

There has been an improvement since 2015, but the proportion of studies that exclude individuals already known to have depression remains low. This may bias research findings intended to inform clinical practice.

摘要

目的

通过识别和有效治疗未被发现的患者来改善健康结果,从而进行筛查。抑郁症筛查被提议用于识别以前未被发现的抑郁症病例。在筛查测试准确性研究中纳入已经被诊断或治疗过的抑郁症患者,可能会夸大准确性,并增加筛查出的新病例数量。本研究调查了:(1)2018-2021 年发表的抑郁症筛查工具准确性的主要研究中,排除已确诊或正在接受治疗的抑郁症患者的比例;以及(2)与上一次 2013-2015 年发表的研究综述相比,这种情况是否有所改善,当时发现 89 项主要研究中有 5 项(5.6%)适当排除了这些患者。

方法

从 2018 年 1 月 1 日至 2021 年 5 月 21 日,通过 MEDLINE 搜索了关于抑郁症筛查工具准确性的主要研究。

结果

在 106 项主要研究中,有 18 项(17.0%;95%置信区间[CI],11.0%至 25.3%)排除了目前被诊断或正在接受治疗的患者。这比 2013-2015 年发表的类似研究高出 11.4%(95%CI,2.8%至 20.0%)。

结论

自 2015 年以来,情况有所改善,但排除已知患有抑郁症的患者的研究比例仍然较低。这可能会影响旨在为临床实践提供信息的研究结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验