Chen Ning, Yu Pengwei, Guo Kun, Lu Xing
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China.
Nanomaterials (Basel). 2022 Mar 14;12(6):954. doi: 10.3390/nano12060954.
One-dimensional (1D) nanostructures possess huge potential in electronics and optoelectronics, but the axial alignment of such 1D structures is still a challenging task. Herein, we report a simple method that enables two-dimensional (2D) C microsheets to evolve into highly ordered nanorod arrays using rubrene as a structure-directing agent. The structural transformation is accomplished by adding droplets of rubrene--xylene solution onto C microsheets and allowing the -xylene solvent to evaporate naturally. In sharp contrast, when rubrene is absent from -xylene, randomly oriented C nanorods are produced. Spectroscopic and microscopic characterizations collectively indicate a rather plausible transformation mechanism that the close lattice match allows the epitaxial growth of rubrene on C microsheets, followed by the reassembly of dissolved C along the aligned rubrene due to the intermolecular charge-transfer (CT) interactions, leading to the formation of ordered nanorod arrays. Due to the aligned structures and the CT interactions between rubrene and C, the photocurrent density of the nanorod arrays is improved by 31.2% in the UV region relative to the randomly oriented counterpart. This work presents a facile and effective strategy for the construction of ordered fullerene nanorod arrays, providing new ideas for the alignment of fullerene and other relevant organic microstructures.
一维(1D)纳米结构在电子学和光电子学领域具有巨大潜力,但此类一维结构的轴向排列仍是一项具有挑战性的任务。在此,我们报道了一种简单方法,该方法能使二维(2D)碳微片利用红荧烯作为结构导向剂演变成高度有序的纳米棒阵列。结构转变是通过将红荧烯 - 二甲苯溶液滴加到碳微片上并让二甲苯溶剂自然蒸发来实现的。与之形成鲜明对比的是,当二甲苯中不存在红荧烯时,会生成随机取向的碳纳米棒。光谱和显微镜表征共同表明了一种相当合理的转变机制,即紧密的晶格匹配使得红荧烯在碳微片上外延生长,随后由于分子间电荷转移(CT)相互作用,溶解的碳沿着排列好的红荧烯重新组装,从而导致有序纳米棒阵列的形成。由于纳米棒阵列的排列结构以及红荧烯与碳之间的CT相互作用,相对于随机取向的对应物,纳米棒阵列在紫外区域的光电流密度提高了31.2%。这项工作为构建有序的富勒烯纳米棒阵列提供了一种简便有效的策略,为富勒烯及其他相关有机微结构的排列提供了新思路。