Jin Jianqun, Wu Shanyu, Ma Yudong, Dong Caiqiao, Wang Wei, Liu Xitong, Xu Haixiao, Long Guankui, Zhang Mingtao, Zhang Jing, Huang Wei
Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
Computational Center for Molecular Science, College of Chemistry, Nankai University, Tianjin 300071, China.
ACS Appl Mater Interfaces. 2020 Apr 29;12(17):19718-19726. doi: 10.1021/acsami.9b23590. Epub 2020 Apr 15.
Binary charge-transfer complex polymorphs composed of perylene and 4,8-bis(dicyanomethylene)-4,8-dihydrobenzo-[1,2-:4,5-']-dithiophene (DTTCNQ) were synthesized separately via a simple artificial nucleation-tailoring method, in both macroscopic and microscopic cocrystal engineering manners. The two polymorphs were testified to be independently thermosalient in the solid state, and the specific self-assembly derived from homogeneous or heterogeneous nucleation by assistance of governable thermodynamic/kinetic drive, leading to a change in the ordered p-n stacking structure. The as-prepared polymorphic microcrystals afforded a significantly varied (opto)electronic property: high n-type transporting and good photoresponsivity for β-complex, and ambipolar transporting with ignorable photoresponsivity for α-complex, attributing to the different charge-transfer and supramolecular alignment. This work provides us a new route to the exploitation of donor-acceptor complex family, making it possible to develop functional materials and devices based on variable supramolecular binary structures.
通过一种简单的人工成核剪裁方法,分别以宏观和微观共晶工程方式合成了由苝和4,8-双(二氰基亚甲基)-4,8-二氢苯并-[1,2-:4,5-']-二噻吩(DTTCNQ)组成的二元电荷转移络合物多晶型物。这两种多晶型物在固态下被证明是独立热致变色的,并且通过可控的热力学/动力学驱动辅助,由均相成核或异相成核产生特定的自组装,导致有序的p-n堆积结构发生变化。所制备的多晶型微晶具有显著不同的(光)电学性质:β-络合物具有高n型传输和良好的光响应性,而α-络合物具有双极性传输且光响应性可忽略不计,这归因于不同的电荷转移和超分子排列。这项工作为供体-受体络合物家族的开发提供了一条新途径,使得基于可变超分子二元结构开发功能材料和器件成为可能。