Suppr超能文献

基于超大规模原子尺度从头算模拟揭示具有 P681R 关键突变的德尔塔变异株:对生物分子相互作用基本原理的启示。

Delta Variant with P681R Critical Mutation Revealed by Ultra-Large Atomic-Scale Ab Initio Simulation: Implications for the Fundamentals of Biomolecular Interactions.

机构信息

Department of Physics and Astronomy, University of Missouri-Kansas City, Kansas City, MO 64110, USA.

Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq.

出版信息

Viruses. 2022 Feb 24;14(3):465. doi: 10.3390/v14030465.

Abstract

The SARS-CoV-2 Delta variant is emerging as a globally dominant strain. Its rapid spread and high infection rate are attributed to a mutation in the spike protein of SARS-CoV-2 allowing for the virus to invade human cells much faster and with an increased efficiency. In particular, an especially dangerous mutation P681R close to the furin cleavage site has been identified as responsible for increasing the infection rate. Together with the earlier reported mutation D614G in the same domain, it offers an excellent instance to investigate the nature of mutations and how they affect the interatomic interactions in the spike protein. Here, using ultra large-scale ab initio computational modeling, we study the P681R and D614G mutations in the SD2-FP domain, including the effect of double mutation, and compare the results with the wild type. We have recently developed a method of calculating the amino-acid-amino-acid bond pairs (AABP) to quantitatively characterize the details of the interatomic interactions, enabling us to explain the nature of mutation at the atomic resolution. Our most significant finding is that the mutations reduce the AABP value, implying a reduced bonding cohesion between interacting residues and increasing the flexibility of these amino acids to cause the damage. The possibility of using this unique mutation quantifiers in a machine learning protocol could lead to the prediction of emerging mutations.

摘要

SARS-CoV-2 的德尔塔变体正在成为一种全球主要的毒株。它的快速传播和高感染率归因于 SARS-CoV-2 刺突蛋白的突变,这使得病毒能够更快地侵入人体细胞,并提高效率。特别是,在靠近弗林裂解位点的位置发现了一个特别危险的突变 P681R,被认为是导致感染率增加的原因。与之前在同一结构域报告的突变 D614G 一起,它为研究突变的性质以及它们如何影响刺突蛋白中的原子间相互作用提供了一个极好的实例。在这里,我们使用超大规模的从头计算建模,研究了 SD2-FP 结构域中的 P681R 和 D614G 突变,包括双突变的影响,并将结果与野生型进行了比较。我们最近开发了一种计算氨基酸-氨基酸键对 (AABP) 的方法,用于定量描述原子间相互作用的细节,使我们能够在原子分辨率上解释突变的性质。我们最重要的发现是,突变降低了 AABP 值,这意味着相互作用残基之间的键合凝聚力降低,这些氨基酸的柔韧性增加,从而导致损伤。在机器学习协议中使用这种独特的突变量化因子的可能性,可能导致对新出现的突变的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/476d/8955942/157d2014482b/viruses-14-00465-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验