Suppr超能文献

SARS-CoV-2 Lambda 变体表现出增强的感染力和免疫抗性。

The SARS-CoV-2 Lambda variant exhibits enhanced infectivity and immune resistance.

机构信息

Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan.

Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 1088639, Japan; Laboratory of Systems Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 6068507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 6068501, Japan.

出版信息

Cell Rep. 2022 Jan 11;38(2):110218. doi: 10.1016/j.celrep.2021.110218. Epub 2021 Dec 18.

Abstract

SARS-CoV-2 Lambda, a variant of interest, has spread in some South American countries; however, its virological features and evolutionary traits remain unclear. In this study, we use pseudoviruses and reveal that the spike protein of the Lambda variant is more infectious than that of other variants due to the T76I and L452Q mutations. The RSYLTPGD246-253N mutation, a unique 7-amino acid deletion in the N-terminal domain of the Lambda spike protein, is responsible for evasion from neutralizing antibodies and further augments antibody-mediated enhancement of infection. Although this mutation generates a nascent N-linked glycosylation site, the additional N-linked glycan is dispensable for the virological property conferred by this mutation. Since the Lambda variant has dominantly spread according to the increasing frequency of the isolates harboring the RSYLTPGD246-253N mutation, our data suggest that the RSYLTPGD246-253N mutation is closely associated with the substantial spread of the Lambda variant in South America.

摘要

SARS-CoV-2 Lambda 是一种引起关注的变异株,已在一些南美国家传播;然而,其病毒学特征和进化特征尚不清楚。在本研究中,我们使用假病毒并揭示 Lambda 变异株的刺突蛋白由于 T76I 和 L452Q 突变而比其他变异株更具传染性。Lambda 刺突蛋白 N 端结构域独特的 7 个氨基酸缺失 RSYLTPGD246-253N 突变,负责逃避中和抗体,并进一步增强抗体介导的感染增强作用。尽管该突变产生了一个新的 N 连接糖基化位点,但该突变赋予的病毒学特性并不需要额外的 N 连接聚糖。由于携带 RSYLTPGD246-253N 突变的分离株的频率不断增加,Lambda 变异株已占主导地位传播,我们的数据表明,RSYLTPGD246-253N 突变与 Lambda 变异株在南美洲的大量传播密切相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/698f/8683271/ecb4bb59c4c6/fx1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验