Department of HepatologyThe First Hospital of Jilin UniversityChangchunChina.
Department of MedicineUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA.
Hepatol Commun. 2022 Jul;6(7):1652-1663. doi: 10.1002/hep4.1933. Epub 2022 Mar 26.
Hepatitis B virus (HBV) infection is a major risk factor of liver cirrhosis and hepatocellular carcinoma. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) has been used to precisely edit the HBV genome and eliminate HBV through non-homologous end-joining repair of double-stranded break (DSB). However, the CRISPR/Cas9-mediated DSB triggers instability of host genome and exhibits low efficiency to edit genome, limiting its application. CRISPR cytidine base editors (CBEs) could silence genes by generating a premature stop codon. Here we developed a CRISPR base editor approach to precisely edit single nucleotide within the HBV genome to impair HBV gene expression. Specifically, a single-guide RNA (sgRNA) was designed to edit the 30th codon of HBV S gene, which encodes HBV surface antigen (HBsAg), from CAG (glutamine) to stop codon TAG. We next used human hepatoma PLC/PRF/5 cells carrying the HBV genome to establish a cell line that expresses a CBE (PLC/PRF/5-CBE). Lentivirus was used to introduce sgRNA into PLC/PRF/5-CBE cells. Phenotypically, 71% of PLC/PRF/5-CBE cells developed a premature stop codon within the S gene. Levels of HBs messenger RNA were significantly decreased. A 92% reduction of HBsAg secretion was observed in PLC/PRF/5-CBE cells. The intracellular HBsAg was also reduced by 84% after treatment of gRNA_S. Furthermore, no off-target effect was detected in predicted off-target loci within the HBV genome. Sequencing confirmed that 95%, 93%, 93%, 9%, and 72% S gene sequences of HBV genotypes B, C, F, G, and H had the binding site of sgRNA. Conclusion: Our findings indicate that CRISPR-mediated base editing is an efficient approach to silence the HBV S gene, suggesting its therapeutic potential to eliminate HBV.
乙型肝炎病毒 (HBV) 感染是肝硬化和肝细胞癌的主要危险因素。成簇规律间隔短回文重复序列 (CRISPR)/CRISPR 相关蛋白 9 (Cas9) 已被用于精确编辑 HBV 基因组,并通过双链断裂 (DSB) 的非同源末端连接修复来消除 HBV。然而,CRISPR/Cas9 介导的 DSB 会引发宿主基因组不稳定,并表现出编辑基因组的低效率,限制了其应用。CRISPR 胞嘧啶碱基编辑器 (CBE) 可以通过产生过早的终止密码子来沉默基因。在这里,我们开发了一种 CRISPR 碱基编辑方法,精确编辑 HBV 基因组中的单个核苷酸,从而损害 HBV 基因表达。具体来说,设计了一个单向导 RNA (sgRNA) 来编辑 HBV S 基因的第 30 个密码子,该密码子编码乙型肝炎表面抗原 (HBsAg),从 CAG(谷氨酰胺)到终止密码子 TAG。接下来,我们使用携带 HBV 基因组的人肝癌 PLC/PRF/5 细胞建立了一个表达 CBE (PLC/PRF/5-CBE) 的细胞系。慢病毒被用于将 sgRNA 引入 PLC/PRF/5-CBE 细胞中。表型上,71%的 PLC/PRF/5-CBE 细胞在 S 基因内产生了一个过早的终止密码子。HBs 信使 RNA 水平显著降低。在 PLC/PRF/5-CBE 细胞中观察到 HBsAg 分泌减少 92%。在用 gRNA_S 处理后,细胞内 HBsAg 也减少了 84%。此外,在 HBV 基因组中预测的靶标位点未检测到脱靶效应。测序证实,HBV 基因型 B、C、F、G 和 H 的 S 基因序列中有 95%、93%、93%、9%和 72%的序列具有 sgRNA 的结合位点。结论:我们的研究结果表明,CRISPR 介导的碱基编辑是一种有效的沉默 HBV S 基因的方法,表明其具有消除 HBV 的治疗潜力。