Suppr超能文献

基于术前改良虚弱指数和实验室检查值预测择期手术患者的术后转归去向

Predicting Elective Surgical Patient Outcome Destination Based on the Preoperative Modified Frailty Index and Laboratory Values.

作者信息

Walczak Steven, Velanovich Vic

机构信息

School of Information and Florida Center for Cybersecurity, University of South Florida, Tampa, Florida.

Department of Surgery, Morsani College of Medicine, University of South Florida, Tampa, Florida.

出版信息

J Surg Res. 2022 Jul;275:341-351. doi: 10.1016/j.jss.2022.02.029. Epub 2022 Mar 24.

Abstract

INTRODUCTION

To determine the accuracy of preoperative modified frailty index (mFI) with or without laboratory values (mFI-labs or labs-continuous) in predicting postoperative discharge destination. Discharge destination is important to providers and patients. The ability to accurately predict discharge destination preoperatively can improve hospital resource utilization and help set patient and family expectations.

METHODS

Cohort analysis of the 2018 American College of Surgeon National Surgical Quality Improvement Project (ACS-NSQIP) Participant Use File of patients undergoing operations with complete data point sets: age, sex, operation work relative-value units; mFI-clinical based on 12 clinical findings, mFI-labs based on seven laboratory values. The nine hierarchical destinations: home, home with assistance, multi-level community, unskilled-care facility, rehabilitation facility, skilled-nursing facility, acute care hospital, hospice, or death, from best to worst outcome. Data were analyzed using univariate analysis, multiple logistic regression and supervised learning artificial neural networks.

RESULTS

Univariate and multivariate in general showed that patients with higher mFI-clinical and mFI-lab scores, as well as older age and more complex operations were more likely to be discharged to facilities other than home. However, these statistical techniques could not predict the exact destination. An artificial neural network analysis demonstrated perfect location prediction in 64.9% of cases and within one level of prefect prediction is 87.4%.

CONCLUSIONS

Using a limited number of preoperative factors, combining the mFI-clinical with laboratory values significantly improves the destination prediction performance significantly better than using the values separately. Preoperative knowledge of the likely discharge destination can benefit postoperative care planning and delivery.

摘要

引言

确定术前改良虚弱指数(mFI)在有或无实验室检查值(mFI-实验室检查值或连续实验室检查值)的情况下预测术后出院目的地的准确性。出院目的地对医疗服务提供者和患者都很重要。术前准确预测出院目的地的能力可以提高医院资源利用率,并有助于设定患者及其家属的预期。

方法

对2018年美国外科医师学会国家外科质量改进项目(ACS-NSQIP)参与者使用文件中具有完整数据集的手术患者进行队列分析:年龄、性别、手术工作相对价值单位;基于12项临床发现的mFI-临床指标,基于7项实验室检查值的mFI-实验室检查值。九个分层目的地:回家、在家接受帮助、多层社区、非熟练护理机构、康复机构、熟练护理机构、急性护理医院、临终关怀机构或死亡,从最佳到最差结果。使用单变量分析、多元逻辑回归和监督学习人工神经网络对数据进行分析。

结果

单变量和多变量分析总体显示,mFI-临床指标和mFI-实验室检查值得分较高的患者,以及年龄较大和手术更复杂的患者,更有可能出院到非家中的机构。然而,这些统计技术无法预测确切的目的地。人工神经网络分析显示,在64.9%的病例中实现了完美的位置预测,在一级完美预测范围内的比例为87.4%。

结论

使用有限数量的术前因素,将mFI-临床指标与实验室检查值相结合,在预测目的地方面的表现明显优于单独使用这些值,显著提高了预测性能。术前了解可能的出院目的地有助于术后护理计划和实施。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验