Suppr超能文献

[2]轮烷作为分子电子记忆应用的开关:分子动力学研究。

[2]Rotaxane as a switch for molecular electronic memory application: A molecular dynamics study.

机构信息

Department of Computer Science and Computer Engineering, University of Bridgeport, Bridgeport, CT, USA.

Department of Electrical and Computer Engineering and Technology, Minnesota State University, Mankato, MN, USA.

出版信息

J Mol Graph Model. 2022 Jul;114:108163. doi: 10.1016/j.jmgm.2022.108163. Epub 2022 Mar 16.

Abstract

As VLSI technology is shifting from microelectronics to nanoelectronics era, bi-stable [2]rotaxane emerges as a promising candidate for molecular electronics. A typical voltage-driven [2]rotaxane consists of a cyclobis-(paraquat-p-phenylene) macrocycle encircling a dumbbell shape molecular chain and moving between two stations on the chain: tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP). As a molecular switch, the macrocycle can move reversibly between two stations along its axis with appropriate driving voltage, resulting in two stable molecular conformational states with distinct high and low resistance. This makes it a well-suited candidate to represent binary states ("0" and "1") for digital electronics. In this work, we performed molecular simulation to investigate the switching mechanism of [2]rotaxane molecule. We used distance and angle variables to characterize the movement of the macrocycle along the chain, and compared the switching behavior of [2]rotaxane in water, ethanol, dimethyl ether and vacuum. The results show that the solvent environment plays an important role in the switching characteristics of [2]rotaxane molecule. The switching of [2]rotaxane is stable, controllable, reversible and repeatable. We also looked into potential failure mechanism of the [2]rotaxane, which could shed light on the fault model, testing and reliability enhancement of [2]rotaxane based molecular electronics. Our simulation results support that [2]rotaxane molecules possess potential to be used for molecular memory and logic applications.

摘要

随着 VLSI 技术从微电子时代向纳电子时代转变,双稳态[2]轮烷作为分子电子学的一种有前途的候选者出现了。一个典型的电压驱动[2]轮烷由一个环双(对-亚甲基-对-苯撑)大环环绕哑铃状分子链组成,并在链上的两个位置之间移动:四硫富瓦烯(TTF)和 1,5-二氧萘(DNP)。作为一种分子开关,大环可以在适当的驱动电压下沿着其轴可逆地在两个位置之间移动,导致两种稳定的分子构象状态,具有明显的高电阻和低电阻。这使其成为代表数字电子学二进制状态(“0”和“1”)的理想候选者。在这项工作中,我们进行了分子模拟研究以探索[2]轮烷分子的开关机制。我们使用距离和角度变量来描述大环沿链的运动,并比较了[2]轮烷在水、乙醇、二甲醚和真空中的开关行为。结果表明,溶剂环境对[2]轮烷分子的开关特性起着重要作用。[2]轮烷的开关是稳定的、可控的、可逆的和可重复的。我们还研究了[2]轮烷的潜在失效机制,这可以为[2]轮烷分子电子学的故障模型、测试和可靠性增强提供启示。我们的模拟结果表明,[2]轮烷分子具有用于分子存储和逻辑应用的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验