Gupta Churni, Tuncer Necibe, Martcheva Maia
Faculty of Pharmacy, University of Montreal, Montreal, QC, Canada.
Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, United States of America.
Math Biosci Eng. 2022 Feb 8;19(4):3636-3672. doi: 10.3934/mbe.2022168.
In this paper, we present a multi-scale co-affection model of HIV infection and opioid addiction. The population scale epidemiological model is linked to the within-host model which describes the HIV and opioid dynamics in a co-affected individual. CD4 cells and viral load data obtained from morphine addicted SIV-infected monkeys are used to validate the within-host model. AIDS diagnoses, HIV death and opioid mortality data are used to fit the between-host model. When the rates of viral clearance and morphine uptake are fixed, the within-host model is structurally identifiable. If in addition the morphine saturation and clearance rates are also fixed the model becomes practical identifiable. Analytical results of the multi-scale model suggest that in addition to the disease-addiction-free equilibrium, there is a unique HIV-only and opioid-only equilibrium. Each of the boundary equilibria is stable if the invasion number of the other epidemic is below one. Elasticity analysis suggests that the most sensitive number is the invasion number of opioid epidemic with respect to the parameter of enhancement of HIV infection of opioid-affected individual. We conclude that the most effective control strategy is to prevent opioid addicted individuals from getting HIV, and to treat the opioid addiction directly and independently from HIV.
在本文中,我们提出了一种HIV感染与阿片类药物成瘾的多尺度共同影响模型。人群尺度的流行病学模型与宿主内模型相联系,宿主内模型描述了共同受影响个体中的HIV和阿片类药物动态。从吗啡成瘾的感染SIV的猴子获得的CD4细胞和病毒载量数据用于验证宿主内模型。艾滋病诊断、HIV死亡和阿片类药物死亡率数据用于拟合宿主间模型。当病毒清除率和吗啡摄取率固定时,宿主内模型在结构上是可识别的。如果此外吗啡饱和率和清除率也固定,模型就变得实际可识别。多尺度模型的分析结果表明,除了无疾病成瘾平衡外,还存在唯一的仅HIV和仅阿片类药物平衡。如果另一种流行病的入侵数低于1,则每个边界平衡都是稳定的。弹性分析表明,最敏感的数是阿片类药物流行病相对于阿片类药物影响个体的HIV感染增强参数的入侵数。我们得出结论,最有效的控制策略是防止阿片类药物成瘾个体感染HIV,并直接且独立于HIV治疗阿片类药物成瘾。