Department of Population Health and Pathobiology, North Carolina State University, Raleigh 27607, USA.
Department of Mathematical Sciences, Florida Atlantic University, Boca Raton 33431, USA.
Math Biosci Eng. 2024 Apr 9;21(4):5577-5603. doi: 10.3934/mbe.2024246.
In this paper we develop a four compartment within-host model of nutrition and HIV. We show that the model has two equilibria: an infection-free equilibrium and infection equilibrium. The infection free equilibrium is locally asymptotically stable when the basic reproduction number $ \mathcal{R}_0 < 1 $, and unstable when $ \mathcal{R}_0 > 1 $. The infection equilibrium is locally asymptotically stable if $ \mathcal{R}_0 > 1 $ and an additional condition holds. We show that the within-host model of HIV and nutrition is structured to reveal its parameters from the observations of viral load, CD4 cell count and total protein data. We then estimate the model parameters for these 3 data sets. We have also studied the practical identifiability of the model parameters by performing Monte Carlo simulations, and found that the rate of clearance of the virus by immunoglobulins is practically unidentifiable, and that the rest of the model parameters are only weakly identifiable given the experimental data. Furthermore, we have studied how the data frequency impacts the practical identifiability of model parameters.
本文建立了一个宿主内营养与 HIV 的四 compartment 模型。我们证明该模型有两个平衡点:无感染平衡点和感染平衡点。当基本再生数 $ \mathcal{R}_0 < 1 $ 时,无感染平衡点是局部渐近稳定的,而当 $ \mathcal{R}_0 > 1 $ 时是不稳定的。当 $ \mathcal{R}_0 > 1 $ 且满足附加条件时,感染平衡点是局部渐近稳定的。我们表明,HIV 和营养的宿主内模型结构可以从病毒载量、CD4 细胞计数和总蛋白数据的观察中揭示其参数。然后,我们针对这 3 个数据集估计了模型参数。我们还通过进行蒙特卡罗模拟研究了模型参数的实际可识别性,发现免疫球蛋白清除病毒的速度在实践中是无法识别的,并且给定实验数据,其余模型参数仅具有弱可识别性。此外,我们还研究了数据频率如何影响模型参数的实际可识别性。