Suppr超能文献

用标签空间划分方法鉴定小鼠中的蛋白质功能。

Identification of protein functions in mouse with a label space partition method.

作者信息

Li Xuan, Lu Lin, Chen Lei

机构信息

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

Department of Radiology, Columbia University Medical Center, New York 10032, USA.

出版信息

Math Biosci Eng. 2022 Feb 10;19(4):3820-3842. doi: 10.3934/mbe.2022176.

Abstract

Protein is very important for almost all living creatures because it participates in most complicated and essential biological processes. Determining the functions of given proteins is one of the most essential problems in protein science. Such determination can be conducted through traditional experiments. However, the experimental methods are always time-consuming and of high costs. In recent years, computational methods give useful aids for identification of protein functions. This study presented a new multi-label classifier for identifying functions of mouse proteins. Due to the number of functional types, which were termed as labels in the classification procedure, a label space partition method was employed to divide labels into some partitions. On each partition, a multi-label classifier was constructed. The classifiers based on all partitions were integrated in the proposed classifier. The cross-validation results proved that the proposed classifier was of good performance. Classifiers with label partition were superior to those without label partition or with random label partition.

摘要

蛋白质对几乎所有生物都非常重要,因为它参与了大多数复杂且关键的生物过程。确定特定蛋白质的功能是蛋白质科学中最核心的问题之一。这种确定可以通过传统实验来进行。然而,实验方法总是耗时且成本高昂。近年来,计算方法为蛋白质功能的鉴定提供了有用的辅助。本研究提出了一种用于鉴定小鼠蛋白质功能的新型多标签分类器。由于功能类型的数量,在分类过程中被称为标签,采用了一种标签空间划分方法将标签划分为若干个分区。在每个分区上,构建一个多标签分类器。基于所有分区的分类器被集成到所提出的分类器中。交叉验证结果证明所提出的分类器具有良好的性能。带有标签划分的分类器优于没有标签划分或随机标签划分的分类器。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验