Suppr超能文献

电子-核运动的量子通量密度:精确动力学与玻恩-奥本海默动力学对比

Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.

作者信息

Schaupp Thomas, Engel Volker

机构信息

Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Strasse 42, Würzburg 97074, Germany.

出版信息

Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200385. doi: 10.1098/rsta.2020.0385. Epub 2022 Mar 28.

Abstract

We study the coupled electronic-nuclear dynamics in a model system to compare numerically exact calculations of electronic and nuclear flux densities with those obtained from the Born-Oppenheimer (BO) approximation. Within the adiabatic expansion of the total wave function, we identify the terms which contribute to the flux densities. It is found that only off-diagonal elements that involve the interaction between different electronic states contribute to the electronic flux whereas in the nuclear case the major contribution belongs to the BO electronic state. New flux densities are introduced where in both, the electronic and the nuclear case, the main contribution is contained in the component corresponding to the BO state. As a consequence, they can be determined within the BO approximation, and an excellent agreement with the exact results is found. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.

摘要

我们在一个模型系统中研究电子 - 核耦合动力学,以便将电子和核通量密度的数值精确计算结果与从玻恩 - 奥本海默(BO)近似得到的结果进行比较。在总波函数的绝热展开中,我们确定了对通量密度有贡献的项。结果发现,只有涉及不同电子态之间相互作用的非对角元素对电子通量有贡献,而在核的情况下,主要贡献属于BO电子态。引入了新的通量密度,在电子和核的情况下,其主要贡献都包含在与BO态对应的分量中。因此,可以在BO近似内确定它们,并且发现与精确结果有很好的一致性。本文是主题为“没有玻恩 - 奥本海默近似的化学”这一特刊的一部分。

相似文献

1
Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200385. doi: 10.1098/rsta.2020.0385. Epub 2022 Mar 28.
3
On the calculation of time-dependent electron momenta within the Born-Oppenheimer approximation.
J Chem Phys. 2019 Apr 28;150(16):164110. doi: 10.1063/1.5092562.
4
Born-Oppenheimer and non-Born-Oppenheimer contributions to time-dependent electron momenta.
J Chem Phys. 2020 May 29;152(20):204310. doi: 10.1063/5.0004560.
5
Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.
Philos Trans A Math Phys Eng Sci. 2014 Feb 10;372(2011):20130059. doi: 10.1098/rsta.2013.0059. Print 2014 Mar 13.
7
Electron-vibration entanglement in the Born-Oppenheimer description of chemical reactions and spectroscopy.
Phys Chem Chem Phys. 2015 Oct 14;17(38):24666-82. doi: 10.1039/c5cp02239h.
8
Electronic Flux Density beyond the Born-Oppenheimer Approximation.
J Phys Chem A. 2016 May 19;120(19):3316-25. doi: 10.1021/acs.jpca.5b12657. Epub 2016 Feb 23.
9
Electronic Born-Oppenheimer approximation in nuclear-electronic orbital dynamics.
J Chem Phys. 2023 Mar 21;158(11):114118. doi: 10.1063/5.0142007.
10
Entanglement in the Born-Oppenheimer Approximation.
J Chem Theory Comput. 2017 Jan 10;13(1):20-28. doi: 10.1021/acs.jctc.6b00959. Epub 2016 Dec 22.

引用本文的文献

1
Chemistry without the Born-Oppenheimer approximation.
Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200375. doi: 10.1098/rsta.2020.0375. Epub 2022 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验