Suppr超能文献

电子非绝热态:超越玻恩-奥本海默近似的密度泛函理论。

Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.

机构信息

Department of Physics, Durham University, , South Road, Durham DH1 3LE, UK.

出版信息

Philos Trans A Math Phys Eng Sci. 2014 Feb 10;372(2011):20130059. doi: 10.1098/rsta.2013.0059. Print 2014 Mar 13.

Abstract

A novel treatment of non-adiabatic couplings is proposed. The derivation is based on a theorem by Hunter stating that the wave function of the complete system of electrons and nuclei can be written, without approximation, as a Born-Oppenheimer (BO)-type product of a nuclear wave function, X(R), and an electronic one, ΦR(r), which depends parametrically on the nuclear configuration R. From the variational principle, we deduce formally exact equations for ΦR(r) and X(R). The algebraic structure of the exact nuclear equation coincides with the corresponding one in the adiabatic approximation. The electronic equation, however, contains terms not appearing in the adiabatic case, which couple the electronic and the nuclear wave functions and account for the electron-nuclear correlation beyond the BO level. It is proposed that these terms can be incorporated using an optimized local effective potential.

摘要

提出了一种新的非绝热耦合处理方法。该推导基于 Hunter 的一个定理,该定理指出,电子和原子核的完整系统的波函数可以无近似地表示为核波函数 X(R)和电子波函数 ΦR(r)的 Born-Oppenheimer(BO)型乘积,后者取决于核构型 R 的参数。从变分原理出发,我们推导出了 ΦR(r)和 X(R)的形式精确方程。精确核方程的代数结构与绝热近似中的核方程相同。然而,电子方程包含在绝热情况下不存在的项,这些项将电子和核波函数耦合起来,并在 BO 水平之外考虑电子-核相关性。提出可以使用优化的局部有效势来包含这些项。

相似文献

1
Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.
Philos Trans A Math Phys Eng Sci. 2014 Feb 10;372(2011):20130059. doi: 10.1098/rsta.2013.0059. Print 2014 Mar 13.
2
Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200385. doi: 10.1098/rsta.2020.0385. Epub 2022 Mar 28.
3
On the calculation of time-dependent electron momenta within the Born-Oppenheimer approximation.
J Chem Phys. 2019 Apr 28;150(16):164110. doi: 10.1063/1.5092562.
5
Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.
J Phys Chem A. 2012 Mar 22;116(11):2728-35. doi: 10.1021/jp207843z. Epub 2011 Nov 21.
6
Factorization and recomposition of molecular wave functions.
J Chem Phys. 2016 Sep 28;145(12):124108. doi: 10.1063/1.4963099.
7
The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction.
J Chem Phys. 2013 Jun 14;138(22):224110. doi: 10.1063/1.4807115.
8
Finite-temperature electronic simulations without the Born-Oppenheimer constraint.
J Chem Phys. 2012 Oct 7;137(13):134112. doi: 10.1063/1.4755992.
9
Born-Oppenheimer and non-Born-Oppenheimer contributions to time-dependent electron momenta.
J Chem Phys. 2020 May 29;152(20):204310. doi: 10.1063/5.0004560.
10
Molecular Quantum Dynamics: A Quantum Computing Perspective.
Acc Chem Res. 2021 Dec 7;54(23):4229-4238. doi: 10.1021/acs.accounts.1c00514. Epub 2021 Nov 17.

引用本文的文献

1
Exact Factorization Adventures: A Promising Approach for Non-Bound States.
Molecules. 2022 Jun 22;27(13):4002. doi: 10.3390/molecules27134002.
2
Geometric energy transfer in two-component systems.
Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200383. doi: 10.1098/rsta.2020.0383. Epub 2022 Mar 28.
3
Coupled- and Independent-Trajectory Approaches Based on the Exact Factorization Using the PyUNIxMD Package.
Top Curr Chem (Cham). 2022 Jan 27;380(1):8. doi: 10.1007/s41061-021-00361-7.
4
Case studies of the time-dependent potential energy surface for dynamics in cavities.
J Chem Phys. 2021 Jan 7;154(1):014102. doi: 10.1063/5.0033386.

本文引用的文献

1
On the quantum theory of molecules.
J Chem Phys. 2012 Dec 14;137(22):22A544. doi: 10.1063/1.4755287.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验