Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
Department of Chemistry & Chemical Biology, Center for Quantitative Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
J Mol Biol. 2022 Jun 15;434(11):167558. doi: 10.1016/j.jmb.2022.167558. Epub 2022 Mar 24.
Computational modeling of nucleic acids plays an important role in molecular biology, enhancing our general understanding of the relationship between structure and function. Biophysical studies have provided a wealth of information on how double-helical DNA responds to proteins and other molecules in its local environment but far less understanding of the larger scale structural responses found in protein-decorated loops and minicircles. Current computational models of DNA range from detailed all-atom molecular dynamics studies, which produce rich time and spatially dependent depictions of small DNA fragments, to coarse-grained simulations, which sacrifice detailed physical and chemical information to treat larger-scale systems. The treatment of DNA used here, at the base-pair step level with rigid-body parameters, allows one to develop models hundreds of base pairs long from local, sequence-specific features found from experiment. The emDNA software takes advantage of this framework, producing optimized structures of DNA at thermal equilibrium with built-in or user-generated elastic models. The program, in combination with the case studies included in this article, allows users of any skill level to develop and investigate mesoscale models of their own design. The functionality of emDNA includes a tool to incorporate experiment-specific configurations, e.g., protein-bound and/or melted DNA from known high-resolution structures, within higher-order 3D models by fixing the orientation and position of user-specified base pairs. The software provides a new avenue into multiscale genetic modeling, giving a wide range of users a deeper understanding of DNA mesoscale organization and the opportunity to pose new questions in genetic research. The publicly available emDNA software, including build instructions and usage information, is available on GitHub (https://nicocvn.github.io/emDNA/).
核酸的计算建模在分子生物学中起着重要作用,增强了我们对结构与功能之间关系的总体理解。生物物理研究提供了大量信息,说明双螺旋 DNA 如何响应其局部环境中的蛋白质和其他分子,但对在蛋白质修饰的环和小型环中发现的更大规模结构响应的理解却很少。目前的 DNA 计算模型范围从详细的全原子分子动力学研究,这些研究产生了小 DNA 片段的丰富的时间和空间相关描绘,到粗粒度模拟,这些模拟牺牲了详细的物理和化学信息来处理更大规模的系统。这里使用的 DNA 处理方法,在碱基对步长水平上使用刚体参数,可以从实验中找到的局部、序列特异性特征出发,开发数百个碱基对长的模型。emDNA 软件利用这一框架,利用内置或用户生成的弹性模型,在热平衡下生成 DNA 的优化结构。该程序与本文包含的案例研究相结合,允许任何技能水平的用户开发和研究自己设计的介观模型。emDNA 的功能包括一个工具,用于通过固定用户指定碱基对的方向和位置,将特定于实验的构象(例如,来自已知高分辨率结构的蛋白质结合和/或融化 DNA)纳入更高阶的 3D 模型中。该软件为多尺度遗传建模提供了新途径,使广泛的用户能够更深入地了解 DNA 介观组织,并为遗传研究提出新问题提供机会。可在 GitHub(https://nicocvn.github.io/emDNA/)上获得公开提供的 emDNA 软件,包括构建说明和使用信息。