Suppr超能文献

基于粗粒化分子模拟的生物分子复合物结构动力学建模。

Modeling Structural Dynamics of Biomolecular Complexes by Coarse-Grained Molecular Simulations.

机构信息

Department of Biophysics, Graduate School of Science, Kyoto University , Sakyo, Kyoto 6068502, Japan.

Department of Biochemistry and Molecular Biophysics, Columbia University , 650 W 168 Street New York, New York 10032, United States.

出版信息

Acc Chem Res. 2015 Dec 15;48(12):3026-35. doi: 10.1021/acs.accounts.5b00338. Epub 2015 Nov 17.

Abstract

Due to hierarchic nature of biomolecular systems, their computational modeling calls for multiscale approaches, in which coarse-grained (CG) simulations are used to address long-time dynamics of large systems. Here, we review recent developments and applications of CG modeling methods, focusing on our methods primarily for proteins, DNA, and their complexes. These methods have been implemented in the CG biomolecular simulator, CafeMol. Our CG model has resolution such that ∼10 non-hydrogen atoms are grouped into one CG particle on average. For proteins, each amino acid is represented by one CG particle. For DNA, one nucleotide is simplified by three CG particles, representing sugar, phosphate, and base. The protein modeling is based on the idea that proteins have a globally funnel-like energy landscape, which is encoded in the structure-based potential energy function. We first describe two representative minimal models of proteins, called the elastic network model and the classic Go̅ model. We then present a more elaborate protein model, which extends the minimal model to incorporate sequence and context dependent local flexibility and nonlocal contacts. For DNA, we describe a model developed by de Pablo's group that was tuned to well reproduce sequence-dependent structural and thermodynamic experimental data for single- and double-stranded DNAs. Protein-DNA interactions are modeled either by the structure-based term for specific cases or by electrostatic and excluded volume terms for nonspecific cases. We also discuss the time scale mapping in CG molecular dynamics simulations. While the apparent single time step of our CGMD is about 10 times larger than that in the fully atomistic molecular dynamics for small-scale dynamics, large-scale motions can be further accelerated by two-orders of magnitude with the use of CG model and a low friction constant in Langevin dynamics. Next, we present four examples of applications. First, the classic Go̅ model was used to emulate one ATP cycle of a molecular motor, kinesin. Second, nonspecific protein-DNA binding was studied by a combination of elaborate protein and DNA models. Third, a transcription factor, p53, that contains highly fluctuating regions was simulated on two perpendicularly arranged DNA segments, addressing intersegmental transfer of p53. Fourth, we simulated structural dynamics of dinucleosomes connected by a linker DNA finding distinct types of internucleosome docking and salt-concentration-dependent compaction. Finally, we discuss many of limitations in the current approaches and future directions. Especially, more accurate electrostatic treatment and a phospholipid model that matches our CG resolutions are of immediate importance.

摘要

由于生物分子系统的层次性质,它们的计算建模需要采用多尺度方法,其中粗粒(CG)模拟用于解决大系统的长时间动力学问题。在这里,我们回顾了 CG 建模方法的最新进展和应用,重点介绍了我们主要针对蛋白质、DNA 及其复合物的方法。这些方法已在 CG 生物分子模拟器 CafeMol 中实现。我们的 CG 模型的分辨率为,平均约 10 个非氢原子被分组到一个 CG 粒子中。对于蛋白质,每个氨基酸由一个 CG 粒子表示。对于 DNA,一个核苷酸由三个 CG 粒子简化,分别代表糖、磷酸和碱基。蛋白质建模基于这样一种观点,即蛋白质具有全局漏斗状的能量景观,该景观由基于结构的位能函数编码。我们首先描述了两种代表性的蛋白质最小模型,称为弹性网络模型和经典 Go̅模型。然后,我们提出了一种更精细的蛋白质模型,该模型将最小模型扩展到包含序列和上下文相关的局部灵活性和非局部接触。对于 DNA,我们描述了 de Pablo 小组开发的一种模型,该模型经过调整,可以很好地再现单链和双链 DNA 的序列依赖性结构和热力学实验数据。蛋白质-DNA 相互作用通过特定情况下的基于结构的项或非特异性情况下的静电和排除体积项来建模。我们还讨论了 CG 分子动力学模拟中的时间标度映射。虽然我们的 CGMD 的表观单步时间大约是全原子分子动力学中小尺度动力学的 10 倍,但通过使用 CG 模型和 Langevin 动力学中的低摩擦常数,可以进一步将大尺度运动加速两个数量级。接下来,我们介绍了四个应用示例。首先,经典 Go̅模型被用于模拟分子马达肌球蛋白的一个 ATP 循环。其次,通过结合精细的蛋白质和 DNA 模型研究了非特异性蛋白质-DNA 结合。第三,模拟了包含高度波动区域的转录因子 p53,该因子位于两个垂直排列的 DNA 片段上,解决了 p53 的片段间转移问题。第四,我们模拟了连接在连接 DNA 上的二核小体的结构动力学,发现了不同类型的核小体对接和盐浓度依赖性的压缩。最后,我们讨论了当前方法的许多局限性和未来的发展方向。特别是,更准确的静电处理和与我们的 CG 分辨率匹配的磷脂模型迫在眉睫。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验