Department of Medicine, University of Washington, Seattle, Washington, USA.
Department of Bioengineering, University of Washington, Seattle, Washington, USA.
J Thromb Haemost. 2022 Jul;20(7):1627-1637. doi: 10.1111/jth.15714. Epub 2022 Apr 11.
Von Willebrand factor (VWF) is classically associated with primary hemostasis and platelet-rich arterial thromboses, but recently has also been implicated in fibrin clotting and venous thrombosis. Direct interaction between fibrin and VWF may mediate these processes, although prior reports are conflicting.
We combined two complementary platforms to characterize VWF-fibrin(ogen) interactions and identify their potential physiologic significance.
Engineered microvessels were lined with human endothelial cells, cultured under flow, and activated to release VWF and form transluminal VWF fibers. Fibrinogen, fibrin monomers, or polymerizing fibrin were then perfused, and interactions with VWF evaluated. Thrombin and fibrinogen were perfused into living versus paraformeldahyde-fixed microvessels and the pressure drop across microvessels monitored. Separately, protein binding to tethered VWF was assessed on a single-molecule level using total internal reflection fluorescence (TIRF) microscopy.
Within microvessels, VWF fibers colocalized with polymerizing fibrin, but not fibrinogen. TIRF microscopy showed no colocalization between VWF and fibrinogen or fibrin monomers in a microfluidic flow chamber across a range of shear rates and protein concentrations. Thrombin-mediated fibrin polymerization within living microvessels triggered endothelial VWF release, increasing the rate and amount of microvessel obstruction compared to fixed vessels with an inert endothelium.
We did not identify specific binding between fibrin(ogen) and VWF at a single-molecule level. Despite this, our results suggest that rapid release of endothelial VWF during clotting may provide a physical support for fibrin polymerization and accelerate thrombosis. This interaction may be of fundamental importance for the understanding and treatment of human thrombotic disease.
血管性血友病因子(VWF)通常与初级止血和富含血小板的动脉血栓形成有关,但最近也与纤维蛋白凝块和静脉血栓形成有关。纤维蛋白与 VWF 之间的直接相互作用可能介导这些过程,尽管之前的报告存在矛盾。
我们结合了两个互补的平台来描述 VWF-纤维蛋白(原)相互作用,并确定其潜在的生理意义。
工程化的微脉管系统用人内皮细胞衬里,在流动条件下培养,并激活以释放 VWF 并形成跨腔 VWF 纤维。然后灌注纤维蛋白原、纤维蛋白单体或聚合纤维蛋白,并评估与 VWF 的相互作用。将凝血酶和纤维蛋白原灌注到活的和多聚甲醛固定的微脉管系统中,并监测微脉管系统的压降。另外,使用全内反射荧光(TIRF)显微镜在单分子水平上评估蛋白质与固定化 VWF 的结合。
在微脉管系统中,VWF 纤维与聚合纤维蛋白共定位,但与纤维蛋白原不共定位。TIRF 显微镜显示,在微流控流动室中,在各种剪切速率和蛋白质浓度下,VWF 与纤维蛋白原或纤维蛋白单体之间没有共定位。在活的微脉管系统中,凝血酶介导的纤维蛋白聚合触发内皮 VWF 释放,与具有惰性内皮的固定血管相比,增加了微脉管阻塞的速度和数量。
我们没有在单分子水平上发现纤维蛋白(原)与 VWF 之间的特异性结合。尽管如此,我们的结果表明,在凝血过程中内皮 VWF 的快速释放可能为纤维蛋白聚合提供物理支持,并加速血栓形成。这种相互作用对于理解和治疗人类血栓性疾病可能具有重要意义。