Akbar Zico Alaia, Malik Yoga Trianzar, Kim Dong-Hu, Cho Sangho, Jang Sung-Yeon, Jeon Ju-Won
School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
Department of Chemistry, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 136-702, Republic of Korea.
Small. 2022 Apr;18(17):e2106937. doi: 10.1002/smll.202106937. Epub 2022 Mar 28.
The advancement of wearable electronics, particularly self-powered wearable electronic devices, necessitates the development of efficient energy conversion technologies with flexible mechanical properties. Recently, ionic thermoelectric (TE) materials have attracted great attention because of their enormous thermopower, which can operate capacitors or supercapacitors by harvesting low-grade heat. This study presents self-healable, stretchable, and flexible ionic TE composites comprising an ionic liquid (IL), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMIM:OTf); a polymer matrix, poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP); and a fluoro-surfactant (FS). The self-healability of the IL-based composites originates from dynamic ion-dipole interactions between the IL, the PVDF-HFP, and the FS. The composites demonstrate excellent ionic TE properties with an ionic Seebeck coefficient (S ) of ≈38.3 mV K and an ionic figure of merit of ZT = 2.34 at 90% relative humidity, which are higher than the values reported for other IL-based TE materials. The IL-based ionic TE composites developed in this study can maintain excellent ionic TE properties under harsh conditions, including severe strain (75%) and multiple cutting-healing cycles.
可穿戴电子设备的发展,尤其是自供电可穿戴电子设备,需要开发具有柔性机械性能的高效能量转换技术。最近,离子热电(TE)材料因其巨大的热电势而备受关注,该热电势可通过收集低品位热量来操作电容器或超级电容器。本研究展示了一种自修复、可拉伸且柔性的离子TE复合材料,其由离子液体(IL)1-乙基-3-甲基咪唑三氟甲磺酸盐(EMIM:OTf)、聚合物基体聚(偏二氟乙烯-co-六氟丙烯)(PVDF-HFP)和氟表面活性剂(FS)组成。基于IL的复合材料的自修复性源于IL、PVDF-HFP和FS之间的动态离子-偶极相互作用。该复合材料在90%相对湿度下表现出优异的离子TE性能,离子塞贝克系数(S)约为38.3 mV K,离子品质因数ZT = 2.34,高于其他基于IL的TE材料所报道的值。本研究中开发的基于IL的离子TE复合材料在包括严重应变(75%)和多次切割-愈合循环在内的苛刻条件下仍能保持优异的离子TE性能。