Liu Hui, Tao Yang-Dan, Wang Li-Hong, Ye Dong-Nai, Huang Xu-Min, Chen Na, Li Chang-Zhi, Liu Shi-Yong
Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, College of Materials, Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, P. R. China.
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
ChemSusChem. 2022 Jun 8;15(11):e202200034. doi: 10.1002/cssc.202200034. Epub 2022 May 2.
Facile synthesis without involvement of toxic reagents is of great significance in the practical application of photovoltaic materials. In this work, four acceptor-donor-acceptor (A-D-A) type unfused-ring acceptors (UFRAs) with stepwise extension in π-conjugation, i. e., CPFB-IC-n (n=1-4), involving cyclopentadithiophene (CPDT) and 1,4-difluorobenzene (DFB) as cores, are facilely synthesized by an atom-, step-economic and labor-saving method through direct arylation of C-H bond (DACH). Among them, CPFB-IC-4 has the longest conjugation lengths among the molecular UFRA ever reported. The dependence of optoelectronic properties and photovoltaic performances of CPFB-IC-n (n=1-4) on conjugation length were systematically investigated. CPFB-IC-2 with near zero highest occupied molecular orbital (HOMO) offsets (ΔE =0.06 eV) achieves the highest power conversion efficiency (PCE), due to the significantly enhanced open voltage (V ) and short current (J ) caused by the balanced frontier molecular orbitals (FMOs) and complementary light absorption. Our work demonstrates that the optical properties and FMOs of UFRAs can be finely tuned by the stepwise elongation of conjugation lengths. Meanwhile, DACH coupling as a powerful tool here established will be a promising candidate for synthesizing high-performance oligomeric UFRAs.
在不使用有毒试剂的情况下进行简便合成,对于光伏材料的实际应用具有重要意义。在本工作中,通过C-H键直接芳基化(DACH)这一原子经济、步骤经济且省力的方法,简便地合成了四种具有逐步扩展π共轭的受体-供体-受体(A-D-A)型非稠环受体(UFRA),即CPFB-IC-n(n = 1-4),其核心包含环戊二噻吩(CPDT)和1,4-二氟苯(DFB)。其中,CPFB-IC-4在已报道的分子型UFRA中具有最长的共轭长度。系统研究了CPFB-IC-n(n = 1-4)的光电性质和光伏性能对共轭长度的依赖性。由于平衡的前线分子轨道(FMO)和互补光吸收导致开路电压(V)和短路电流(J)显著增强,具有近乎零最高占据分子轨道(HOMO)偏移(ΔE = 0.06 eV)的CPFB-IC-2实现了最高的功率转换效率(PCE)。我们的工作表明,通过逐步延长共轭长度,可以精细调节UFRA的光学性质和FMO。同时,在此建立的DACH偶联作为一种强大工具,将成为合成高性能低聚UFRA的有前途的候选方法。