Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323 United States.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439 United States.
J Am Chem Soc. 2022 Apr 6;144(13):5945-5955. doi: 10.1021/jacs.2c00055. Epub 2022 Mar 28.
A novel allylic 1,6 hydrogen-atom-transfer mechanism is established through infrared activation of the 2-butenal oxide Criegee intermediate, resulting in very rapid unimolecular decay to hydroxyl (OH) radical products. A new precursor, /-1,3-diiodobut-1-ene, is synthesized and photolyzed in the presence of oxygen to generate a new four-carbon Criegee intermediate with extended conjugation across the vinyl and carbonyl oxide groups that facilitates rapid allylic 1,6 H-atom transfer. A low-energy reaction pathway involving isomerization of 2-butenal oxide from a lower-energy () conformer to a higher-energy () conformer followed by 1,6 hydrogen transfer a seven-membered ring transition state is predicted theoretically and shown experimentally to yield OH products. The low-lying () conformer of 2-butenal oxide is identified based on computed anharmonic frequencies and intensities of its conformers. Experimental IR action spectra recorded in the fundamental CH stretch region with OH product detection by UV laser-induced fluorescence reveal a distinctive IR transition of the low-lying () conformer at 2996 cm that results in rapid unimolecular decay to OH products. Statistical RRKM calculations involving a combination of conformational isomerization and unimolecular decay 1,6 H-transfer yield an effective decay rate () on the order of 10 s at ca. 3000 cm in good accord with the experiment. Unimolecular decay proceeds with significant enhancement due to quantum mechanical tunneling. A rapid thermal decay rate of ca. 10 s is predicted by master-equation modeling of 2-butenal oxide at 298 K, 1 bar. This novel unimolecular decay pathway is expected to increase the nonphotolytic production of OH radicals upon alkene ozonolysis in the troposphere.
建立了一种新型的烯丙基 1,6 氢原子转移机制,通过红外激活 2-丁烯醛氧化物 Criegee 中间体实现,导致非常快速的单分子分解为羟基(OH)自由基产物。合成了一种新的前体/-1,3-二碘丁-1-烯,并在氧气存在下光解,生成一个新的具有扩展共轭的四碳 Criegee 中间体,其乙烯基和羰基氧化物基团跨越,有利于快速烯丙基 1,6 H-原子转移。理论预测并实验证明存在一种低能反应途径,涉及 2-丁烯醛氧化物从低能()构象异构化为高能()构象,然后进行 1,6 氢转移-七元环过渡态,生成 OH 产物。基于计算得到的各构象体的非谐频率和强度,确定了 2-丁烯醛氧化物的低能()构象体。通过 UV 激光诱导荧光检测 OH 产物,在 CH 伸缩基频区记录的实验红外作用光谱揭示了低能()构象体在 2996 cm 处的独特红外跃迁,导致快速单分子分解为 OH 产物。涉及构象异构化和单分子分解的统计 RRKM 计算-1,6 H 转移得到在约 3000 cm 处的有效分解速率()为 10 s 数量级,与实验结果非常吻合。由于量子力学隧道效应,单分子分解得到显著增强。通过在 298 K、1 bar 下对 2-丁烯醛氧化物的主方程建模,预测其快速热分解速率约为 10 s。这种新型的单分子分解途径有望增加对流层中烯烃臭氧化作用下 OH 自由基的非光解生成。