Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Av. Wilfrido Massieu Esq, Cda. Miguel Stampa s/n, 07738, Gustavo A. Madero, Ciudad de México, Mexico; Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Luis Enrique Erro s/n, Zacatenco, 07738, Gustavo A. Madero, Ciudad de México, Mexico.
Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional, Luis Enrique Erro s/n, Zacatenco, 07738, Gustavo A. Madero, Ciudad de México, Mexico.
J Mech Behav Biomed Mater. 2022 Jun;130:105190. doi: 10.1016/j.jmbbm.2022.105190. Epub 2022 Mar 23.
In the present work a comprehensive characterization of the hierarchical architecture of the walnut shell (Juglans regia L.) was carried out using scanning electron microscopy (SEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). Furthermore, micromechanical properties (hardness, H and elastic modulus, E) of plant tissues were evaluated at cell wall level by applying the instrumented indentation technique (IIT). The complex architecture of the material was described in terms of four hierarchical levels (HL): endocarp (H1), plant tissues (H2), plant cells (H3) and cell wall (H4). Our findings revealed that the walnut shell consists of a multilayer structure (sclerenchyma tissue, ST; interface tissue, IT; porous tissue, PT; and flattened parenchyma tissue, FPT), where differences in the microstructure and composition of plant tissues generate parallel gradients along the cross-section. The indentation tests showed a functional gradient with a sandwich-like configuration, i.e., a lightweight and soft layer (PT, H = 0.04 GPa) is located between two dense and hard layers (ST, H = 0.33 GPa; FPT, H = 0.28 GPa); where additionally there is an interface between ST and PT (IT, H = 0.16 GPa). This configuration is a successful strategy designed by nature to improve the protection of the kernel by increasing the strength of the shell. Therefore, the walnut shell can be considered as a functionally graded material (FGM), which can be used as bioinspiration for the design of new functional synthetic materials. In addition, we proposed some structure-property-function relationships in the whole walnut shell and in each of the plant tissues.
在本工作中,使用扫描电子显微镜(SEM)、原子力显微镜(AFM)和共聚焦激光扫描显微镜(CLSM)对胡桃壳(Juglans regia L.)的分级结构进行了全面表征。此外,通过应用仪器化压痕技术(IIT),在细胞壁水平上评估了植物组织的微力学性能(硬度 H 和弹性模量 E)。通过四个层次(HL)来描述材料的复杂结构:内果皮(H1)、植物组织(H2)、植物细胞(H3)和细胞壁(H4)。我们的研究结果表明,胡桃壳由多层结构(厚壁组织,ST;界面组织,IT;多孔组织,PT;扁平薄壁组织,FPT)组成,其中植物组织的微观结构和组成的差异沿横截面产生平行梯度。压痕测试显示具有夹层结构的功能梯度,即轻量级和柔软的层(PT,H=0.04 GPa)位于两个密集和坚硬的层(ST,H=0.33 GPa;FPT,H=0.28 GPa)之间;此外,ST 和 PT 之间存在一个界面(IT,H=0.16 GPa)。这种配置是大自然设计的一种成功策略,通过增加壳的强度来提高内核的保护。因此,胡桃壳可以被认为是一种功能梯度材料(FGM),可以作为设计新型功能合成材料的仿生学。此外,我们提出了整个胡桃壳和每个植物组织中的一些结构-性能-功能关系。