Suppr超能文献

Polymer curing assisted formation of optically visible sub-micron blisters of multilayer graphene for local strain engineering.

作者信息

Pandey Mukesh, Kumar Rakesh

机构信息

T-GraMS Laboratory, Department of Physics, Indian Institute of Technology Ropar, Rupnagar, Punjab - 140001, India.

出版信息

J Phys Condens Matter. 2022 Apr 14;34(24). doi: 10.1088/1361-648X/ac61b4.

Abstract

The local or global straining techniques are used to modulate the electronic, vibrational and optical properties of the two-dimensional (2D) materials. However, manipulating the physical properties of a 2D material under a local strain is comparatively more challenging. In this work, we demonstrate an easy and efficient polymer curing assisted technique for the formation of optically visible multilayer graphene (MLG) blisters of different shapes and sizes. The detailed spectroscopic and morphological analyses have been employed for exploring the dynamics of the confined matter inside the sub-micron blisters, which confirms that the confined matter inside the blister is liquid (water). From further analyses, we find the nonlinear elastic plate model as an acceptable model under certain limits for the mechanical analyses of the MLG blisters over the (poly)vinyl alcohol (PVA) polymer film to estimate the MLG-substrate interfacial adhesion energy and confinement pressure inside the blisters. The findings open new pathways for exploiting the technique for the formation of sub-micron blisters of the 2D materials for local strain-engineering applications, as well as the temperature-controlled release of the confined matter.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验