Suppr超能文献

基于图胶囊网络的图聚类

Graph Clustering With Graph Capsule Network.

作者信息

Zhang Xianchao, Mu Jie, Liu Han, Zhang Xiaotong, Zong Linlin, Wang Guanglu

机构信息

School of Software, Dalian University of Technology, Dalian 116024, China.

Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian 116024, China

出版信息

Neural Comput. 2022 Apr 15;34(5):1256-1287. doi: 10.1162/neco_a_01493.

Abstract

Graph clustering, which aims to partition a set of graphs into groups with similar structures, is a fundamental task in data analysis. With the great advances made by deep learning, deep graph clustering methods have achieved success. However, these methods have two limitations: (1) they learn graph embeddings by a neural language model that fails to effectively express graph properties, and (2) they treat embedding learning and clustering as two isolated processes, so the learned embeddings are unsuitable for the subsequent clustering. To overcome these limitations, we propose a novel capsule-based graph clustering (CGC) algorithm to cluster graphs. First, we construct a graph clustering capsule network (GCCN) that introduces capsules to capture graph properties. Second, we design an iterative optimization strategy to alternately update the GCCN parameters and clustering assignment parameters. This strategy leads GCCN to learn cluster-oriented graph embeddings. Experimental results show that our algorithm achieves performance superior to that of existing graph clustering algorithms in terms of three standard evaluation metrics: ACC, NMI, and ARI. Moreover, we use visualization results to analyze the effectiveness of the capsules and demonstrate that GCCN can learn cluster-oriented embeddings.

摘要

图聚类旨在将一组图划分为具有相似结构的组,是数据分析中的一项基本任务。随着深度学习取得的巨大进展,深度图聚类方法已取得成功。然而,这些方法有两个局限性:(1)它们通过神经语言模型学习图嵌入,而该模型无法有效表达图的属性;(2)它们将嵌入学习和聚类视为两个孤立的过程,因此所学习的嵌入不适用于后续聚类。为克服这些局限性,我们提出一种新颖的基于胶囊的图聚类(CGC)算法来对图进行聚类。首先,我们构建一个图聚类胶囊网络(GCCN),该网络引入胶囊来捕获图的属性。其次,我们设计一种迭代优化策略,以交替更新GCCN参数和聚类分配参数。这种策略使GCCN学习面向聚类的图嵌入。实验结果表明,在ACC、NMI和ARI这三个标准评估指标方面,我们的算法实现了优于现有图聚类算法的性能。此外,我们使用可视化结果来分析胶囊的有效性,并证明GCCN可以学习面向聚类的嵌入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验