Suppr超能文献

推进医学成像:使用图卷积网络 (GCN) 检测多种药物治疗和药物不良反应。

Advancing medical imaging: detecting polypharmacy and adverse drug effects with Graph Convolutional Networks (GCN).

机构信息

Collage of Engineering, Department of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey.

College of Computer Science and Information Technology, Department of Information Technology, University of Kirkuk, Kirkuk, Iraq.

出版信息

BMC Med Imaging. 2024 Jul 15;24(1):174. doi: 10.1186/s12880-024-01349-7.

Abstract

Polypharmacy involves an individual using many medications at the same time and is a frequent healthcare technique used to treat complex medical disorders. Nevertheless, it also presents substantial risks of negative medication responses and interactions. Identifying and addressing adverse effects caused by polypharmacy is crucial to ensure patient safety and improve healthcare results. This paper introduces a new method using Graph Convolutional Networks (GCN) to identify polypharmacy side effects. Our strategy involves developing a medicine interaction graph in which edges signify drug-drug intuitive predicated on pharmacological properties and hubs symbolize drugs. GCN is a well-suited profound learning procedure for graph-based representations of social information. It can be used to anticipate the probability of medicate unfavorable impacts and to memorize important representations of sedate intuitive. Tests were conducted on a huge dataset of patients' pharmaceutical records commented on with watched medicate unfavorable impacts in arrange to approve our strategy. Execution of the GCN show, which was prepared on a subset of this dataset, was evaluated through a disarray framework. The perplexity network shows the precision with which the show categories occasions. Our discoveries demonstrate empowering advance within the recognizable proof of antagonistic responses related with polypharmaceuticals. For cardiovascular system target drugs, GCN technique achieved an accuracy of 94.12%, precision of 86.56%, F1-Score of 88.56%, AUC of 89.74% and recall of 87.92%. For respiratory system target drugs, GCN technique achieved an accuracy of 93.38%, precision of 85.64%, F1-Score of 89.79%, AUC of 91.85% and recall of 86.35%. And for nervous system target drugs, GCN technique achieved an accuracy of 95.27%, precision of 88.36%, F1-Score of 86.49%, AUC of 88.83% and recall of 84.73%. This research provides a significant contribution to pharmacovigilance by proposing a data-driven method to detect and reduce polypharmacy side effects, thereby increasing patient safety and healthcare decision-making.

摘要

多药治疗涉及个体同时使用多种药物,是治疗复杂医疗疾病的常用医疗技术。然而,它也存在药物不良反应和相互作用的巨大风险。识别和解决多药治疗引起的不良反应对于确保患者安全和改善医疗保健结果至关重要。本文介绍了一种使用图卷积网络(GCN)识别多药治疗副作用的新方法。我们的策略包括开发一个药物相互作用图,其中边缘表示基于药理学特性的药物-药物直观预测,节点表示药物。GCN 是一种非常适合处理基于社交信息图表示的深度学习过程。它可以用于预测药物不良反应的概率,并记忆药物直观的重要表示。我们在一个包含大量患者药物记录的数据集上进行了测试,该数据集对观察到的药物不良反应进行了注释,以验证我们的策略。在该数据集的一个子集上训练的 GCN 模型通过混淆矩阵进行评估。混淆矩阵显示了模型分类事件的准确性。我们的发现证明了在识别与多药治疗相关的不良反应方面取得了进展。对于心血管系统靶点药物,GCN 技术的准确率为 94.12%,精度为 86.56%,F1-Score 为 88.56%,AUC 为 89.74%,召回率为 87.92%。对于呼吸系统靶点药物,GCN 技术的准确率为 93.38%,精度为 85.64%,F1-Score 为 89.79%,AUC 为 91.85%,召回率为 86.35%。对于神经系统靶点药物,GCN 技术的准确率为 95.27%,精度为 88.36%,F1-Score 为 86.49%,AUC 为 88.83%,召回率为 84.73%。这项研究通过提出一种数据驱动的方法来检测和减少多药治疗的副作用,从而提高患者安全性和医疗保健决策水平,为药物警戒做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8643/11247854/9cd99a2324c2/12880_2024_1349_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验