Suppr超能文献

构建预测重症急性胰腺炎继发胸腔积液的列线图模型。

Construction of a Nomogram Model for Predicting Pleural Effusion Secondary to Severe Acute Pancreatitis.

作者信息

Zhou Bing-Mei, Qiu Zhao-Lei, Niu Kai-Xuan, Wang Yin-E, Jie Fu-Chen

机构信息

Department of Emergency, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, Anhui, China.

出版信息

Emerg Med Int. 2022 Mar 19;2022:4199209. doi: 10.1155/2022/4199209. eCollection 2022.

Abstract

BACKGROUND

This study aims to investigate the risk factors of pleural effusion (PE) secondary to severe acute pancreatitis (SAP) and to build a nomogram model.

METHODS

The clinical parameters of SAP patients admitted to the emergency department of the First Affiliated Hospital of Bengbu Medical College from January 2019 to August 2021 were retrospectively collected. The independence risk factors of PE secondary to SAP were analyzed by univariate analysis and multivariate logistic regression analysis. A nomogram risk prediction model was established and validated through the area under the ROC curve.

RESULT

Two hundred twenty-two SAP patients were included for analysis, of which 65 patients experienced secondary PE. The incidence of PE secondary to SAP was 29.28% (65/222). Logistic regression analysis showed that serum albumin (ALB) (OR = 0.830, 95% CI: 0.736∼0.936), fibrinogen (FIB) (OR = 4.573, 95% CI: 1.795∼11.648), C-reactive protein (CRP) (OR = 1.046, 95% CI: 1.009∼1.083), acute physiology, chronic health score system (APACHE-II) score (OR = 1.484, 95% CI: 1.106∼1.990), and sequential organ failure score (SOFA) (OR = 43.038, 95% CI: 2.030∼4.548) were independent risk factors for PE secondary to SAP ( < 0.05) and entered into the nomogram. The nomogram showed robust discrimination with an index of concordance of 0.755 and an area under the receiver operating characteristic curve of 0.837 (95% CI: 0.779∼0.894).

CONCLUSION

We developed a nomogram model for PE secondary to SAP with ALB, FIB, CRP, APACHE-II scores, and SOFA scores. The nomogram model showed good discrimination and consistency, and it can better predict the risk of PE secondary to SAP.

摘要

背景

本研究旨在探讨重症急性胰腺炎(SAP)继发胸腔积液(PE)的危险因素,并构建列线图模型。

方法

回顾性收集2019年1月至2021年8月蚌埠医学院第一附属医院急诊科收治的SAP患者的临床参数。通过单因素分析和多因素逻辑回归分析SAP继发PE的独立危险因素。建立列线图风险预测模型,并通过ROC曲线下面积进行验证。

结果

纳入222例SAP患者进行分析,其中65例发生继发PE。SAP继发PE的发生率为29.28%(65/222)。逻辑回归分析显示,血清白蛋白(ALB)(OR = 0.830,95%CI:0.736~0.936)、纤维蛋白原(FIB)(OR = 4.573,95%CI:1.795~11.648)、C反应蛋白(CRP)(OR = 1.046,95%CI:1.009~1.083)、急性生理与慢性健康评分系统(APACHE-II)评分(OR = 1.484,95%CI:1.106~1.990)和序贯器官衰竭评分(SOFA)(OR = 43.038,95%CI:2.030~4.548)是SAP继发PE的独立危险因素(P < 0.05),并纳入列线图。该列线图显示出较强的区分能力,一致性指数为0.755,受试者操作特征曲线下面积为0.837(95%CI:0.779~0.894)。

结论

我们构建了一个基于ALB、FIB、CRP、APACHE-II评分和SOFA评分的SAP继发PE列线图模型。该列线图模型具有良好的区分能力和一致性,能够更好地预测SAP继发PE的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b93a/8957464/0f8855ce717c/EMI2022-4199209.001.jpg

相似文献

4
Usefulness of Random Forest Algorithm in Predicting Severe Acute Pancreatitis.随机森林算法在预测重症急性胰腺炎中的应用。
Front Cell Infect Microbiol. 2022 Jun 10;12:893294. doi: 10.3389/fcimb.2022.893294. eCollection 2022.

本文引用的文献

2
Management of Severe Acute Pancreatitis.重症急性胰腺炎的管理
Curr Treat Options Gastroenterol. 2020;18(4):670-681. doi: 10.1007/s11938-020-00322-x. Epub 2020 Nov 19.
5
Severe acute pancreatitis with inflammation extending to the scrotum.重症急性胰腺炎伴炎症蔓延至阴囊。
Clin Case Rep. 2019 Nov 6;7(12):2592-2593. doi: 10.1002/ccr3.2529. eCollection 2019 Dec.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验