Suppr超能文献

缺失数据和插补对使用差异项目功能方法检测认知测试偏倚的影响。

The effect of missing data and imputation on the detection of bias in cognitive testing using differential item functioning methods.

机构信息

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe St, Baltimore, MD, USA.

Cochlear Center for Hearing and Public Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.

出版信息

BMC Med Res Methodol. 2022 Mar 27;22(1):81. doi: 10.1186/s12874-022-01572-2.

Abstract

BACKGROUND

Item response theory (IRT) methods for addressing differential item functioning (DIF) can detect group differences in responses to individual items (e.g., bias). IRT and DIF-detection methods have been used increasingly often to identify bias in cognitive test performance by characteristics (DIF grouping variables) such as hearing impairment, race, and educational attainment. Previous analyses have not considered the effect of missing data on inferences, although levels of missing cognitive data can be substantial in epidemiologic studies.

METHODS

We used data from Visit 6 (2016-2017) of the Atherosclerosis Risk in Communities Neurocognitive Study (N = 3,580) to explicate the effect of artificially imposed missing data patterns and imputation on DIF detection.

RESULTS

When missing data was imposed among individuals in a specific DIF group but was unrelated to cognitive test performance, there was no systematic error. However, when missing data was related to cognitive test performance and DIF group membership, there was systematic error in DIF detection. Given this missing data pattern, the median DIF detection error associated with 10%, 30%, and 50% missingness was -0.03, -0.08, and -0.14 standard deviation (SD) units without imputation, but this decreased to -0.02, -0.04, and -0.08 SD units with multiple imputation.

CONCLUSIONS

Incorrect inferences in DIF testing have downstream consequences for the use of cognitive tests in research. It is therefore crucial to consider the effect and reasons behind missing data when evaluating bias in cognitive testing.

摘要

背景

用于解决项目功能差异(DIF)的项目反应理论(IRT)方法可以检测到个体项目(如偏差)的反应中的群体差异。IRT 和 DIF 检测方法已越来越多地用于通过听力障碍、种族和教育程度等特征(DIF 分组变量)识别认知测试表现中的偏差。尽管在流行病学研究中认知数据缺失的程度可能很大,但以前的分析并未考虑缺失数据对推断的影响。

方法

我们使用社区动脉粥样硬化风险神经认知研究(ARIC-NCS)第 6 次访问(2016-2017 年)的数据,详细说明人为引入缺失数据模式和插补对 DIF 检测的影响。

结果

当缺失数据仅在特定 DIF 组的个体中引入且与认知测试表现无关时,没有系统误差。但是,当缺失数据与认知测试表现和 DIF 组归属相关时,DIF 检测存在系统误差。考虑到这种缺失数据模式,在没有插补的情况下,与 10%、30%和 50%缺失相关的中位 DIF 检测误差分别为-0.03、-0.08 和-0.14 标准差(SD)单位,但这一数值在使用多重插补后降低至-0.02、-0.04 和-0.08 SD 单位。

结论

DIF 测试中的错误推断会对认知测试在研究中的使用产生下游影响。因此,在评估认知测试中的偏差时,考虑缺失数据的影响和原因至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e34b/8961895/a098ab03e0c8/12874_2022_1572_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验