Suppr超能文献

一种针对来自多个衰老与痴呆队列的认知数据的强大整合方法。

A robust harmonization approach for cognitive data from multiple aging and dementia cohorts.

作者信息

Giorgio Joseph, Tanna Ankeet, Malpetti Maura, White Simon R, Wang Jingshen, Baker Suzanne, Landau Susan, Tanaka Tomotaka, Chen Christopher, Rowe James B, O'Brien John, Fripp Jurgen, Breakspear Michael, Jagust William, Kourtzi Zoe

机构信息

Helen Wills Neuroscience Institute University of California Berkeley Berkeley California USA.

School of Psychological Sciences College of Engineering, Science and the Environment University of Newcastle Newcastle New South Wales Australia.

出版信息

Alzheimers Dement (Amst). 2023 Jul 26;15(3):e12453. doi: 10.1002/dad2.12453. eCollection 2023 Jul-Sep.

Abstract

INTRODUCTION

Although many cognitive measures have been developed to assess cognitive decline due to Alzheimer's disease (AD), there is little consensus on optimal measures, leading to varied assessments across research cohorts and clinical trials making it difficult to pool cognitive measures across studies.

METHODS

We used a two-stage approach to harmonize cognitive data across cohorts and derive a cross-cohort score of cognitive impairment due to AD. First, we pool and harmonize cognitive data from international cohorts of varying size and ethnic diversity. Next, we derived cognitive composites that leverage maximal data from the harmonized dataset.

RESULTS

We show that our cognitive composites are robust across cohorts and achieve greater or comparable sensitivity to AD-related cognitive decline compared to the Mini-Mental State Examination and Preclinical Alzheimer Cognitive Composite. Finally, we used an independent cohort validating both our harmonization approach and composite measures.

DISCUSSION

Our easy to implement and readily available pipeline offers an approach for researchers to harmonize their cognitive data with large publicly available cohorts, providing a simple way to pool data for the development or validation of findings related to cognitive decline due to AD.

摘要

引言

尽管已经开发了许多认知测量方法来评估阿尔茨海默病(AD)导致的认知衰退,但对于最佳测量方法几乎没有共识,这导致不同研究队列和临床试验中的评估存在差异,使得跨研究汇总认知测量数据变得困难。

方法

我们采用两阶段方法来协调各队列间的认知数据,并得出AD所致认知障碍的跨队列评分。首先,我们汇总并协调来自不同规模和种族多样性的国际队列的认知数据。接下来,我们得出利用了来自协调数据集的最大数据量的认知综合指标。

结果

我们表明,我们的认知综合指标在各队列中都很稳健,并且与简易精神状态检查表和临床前阿尔茨海默病认知综合指标相比,对AD相关认知衰退具有更高或相当的敏感性。最后,我们使用一个独立队列验证了我们的协调方法和综合测量指标。

讨论

我们易于实施且随时可用的流程为研究人员提供了一种方法,使他们能够将自己的认知数据与大量公开可用的队列进行协调,为汇总数据以开发或验证与AD所致认知衰退相关的研究结果提供了一种简单的方式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d249/10369372/f986a7d7fb65/DAD2-15-e12453-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验