Suppr超能文献

多叉分位数回归在纵向数据分析中的应用——以孕激素数据分析为例。

Multikink quantile regression for longitudinal data with application to progesterone data analysis.

机构信息

The Chow Center for Economic Research, Xiamen University, Xiamen, China.

MOE Lab of Econometrics, WISE, and Department of Statistics and Data Science, School of Economics, Xiamen University, Xiamen, China.

出版信息

Biometrics. 2023 Jun;79(2):747-760. doi: 10.1111/biom.13667. Epub 2022 Apr 11.

Abstract

Motivated by investigating the relationship between progesterone and the days in a menstrual cycle in a longitudinal study, we propose a multikink quantile regression model for longitudinal data analysis. It relaxes the linearity condition and assumes different regression forms in different regions of the domain of the threshold covariate. In this paper, we first propose a multikink quantile regression for longitudinal data. Two estimation procedures are proposed to estimate the regression coefficients and the kink points locations: one is a computationally efficient profile estimator under the working independence framework while the other one considers the within-subject correlations by using the unbiased generalized estimation equation approach. The selection consistency of the number of kink points and the asymptotic normality of two proposed estimators are established. Second, we construct a rank score test based on partial subgradients for the existence of the kink effect in longitudinal studies. Both the null distribution and the local alternative distribution of the test statistic have been derived. Simulation studies show that the proposed methods have excellent finite sample performance. In the application to the longitudinal progesterone data, we identify two kink points in the progesterone curves over different quantiles and observe that the progesterone level remains stable before the day of ovulation, then increases quickly in 5 to 6 days after ovulation and then changes to stable again or drops slightly.

摘要

受纵向研究中孕激素与月经周期天数关系的启发,我们提出了一种多拐点分位数回归模型,用于纵向数据分析。它放宽了线性条件,并假设在阈值协变量的域的不同区域中具有不同的回归形式。在本文中,我们首先提出了一种用于纵向数据的多拐点分位数回归。针对回归系数和拐点位置,我们提出了两种估计程序:一种是在工作独立性框架下计算效率高的轮廓估计,另一种是通过使用无偏广义估计方程方法考虑个体内相关性。证明了拐点数量的选择一致性和两种提议估计量的渐近正态性。其次,我们基于部分次梯度构建了一个基于秩得分的检验,用于检验纵向研究中的拐点效应是否存在。已经推导出了检验统计量的零分布和局部替代分布。模拟研究表明,所提出的方法在有限样本中具有出色的性能。在对纵向孕激素数据的应用中,我们在不同分位数的孕激素曲线上确定了两个拐点,并观察到孕激素水平在排卵日之前保持稳定,然后在排卵后 5 到 6 天迅速增加,然后再次稳定或略有下降。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验